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Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt und keine
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Zusammenfassung

Die Ableitung von Aussagen über den Inhalt eines Videos, in diesem Fall die Art der
Bewegung von Personen, ist eine Herausforderung und ein großes Forschungsgebiet.
Die wesentliche Herausforderung liegt in der Komplexität menschlicher Bewegung. Bei-
spielsweise kann eine Person am Bahnhof rennen um einen Zug zu erreichen oder sie
kann vor etwas flüchten. In dieser Arbeit wird eine neue Methode vorgestellt, um Ak-
tionen von Menschen zu erkennen die auf dem Implicit Shape Model basiert. Dieses
Modell versucht anhand von Trainingssequenzen, die kurze und möglichst charakteris-
tische Ausschnitte von Aktionen enthalten, eine Aussage darüber zu treffen wann eine
Trainingsaktion im Eingabevideo auftritt.
Als Eingabedaten werden aufgezeichnete Kooordinaten von dreidimensionalen Motion
Capture Verfahren verwendet. Diese Daten werden zunächst auf ein geeignetes Per-
sonenmodell übertragen. In dieser Arbeit wird dabei ein menschliches Modell mit 15
Gelenken und 12 Körperteilen verwendet. Basierend auf den Stellungen der Körperteile
zueinander können mit diesem Modell Winkel zwischen den einzelnen Körperelementen
berechnet werden. Diese Winkelinformationen werden anschließend zu einem charak-
teristischen Aktionsdeskriptor zusammengefasst, der die Form einer Matrix hat. Jede
Zeile entspricht dabei einer Aufnahme und in den Spalten stehen die Winkelwerte sowie
deren Ableitungen. Solch eine Matrix wird sowohl für die zu klassifizierende Eingabe-
sequenz als auch für jede Trainingssequenz erstellt.
Jede Zeile dieser Matrix, die für eine Aufnahme aus der Eingabesequenz steht, wird
mit allen Zeilen der Matrizen von Trainingssequenzen verglichen und die am besten
passenden mit einer Radiussuche gefunden. Ausgehend von diesen nächsten Nachbarn
werden Votes für das Ende der Aktion bestimmt, indem eine Assoziation Descriptor →
Aktion→ Aktionsende gelernt wird. Unter all diesen Votes werden Maxima mit dem
Mean Shift Verfahren gesucht. Diese Maxima werden am Ende zu einer finalen Aussage
über die aktuelle Aktion der Person im Video verarbeitet. Das Ziel dieser Arbeit ist
dabei die Erkennung von Standardbewegungen wie Laufen, Springen und Rennen.
Das Ergebnis der Arbeit zeigt, das eine Erkennung von solchen Aktionen möglich ist. In
der Evaluierung wurden zunächst Ergebnisse verglichen, um geeignete Parameterein-
stellungen zu finden. Mit Hilfe dieser Parameter wurden dann Versuche durchgeführt,
die eine erfolgreiche und stabile Erkennung von verschiedenen Aktionen zeigen.
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Abstract

Analyzing video data and derivate statements about the actions of humans in videos
is a very challenging task. The main difficulty is the complexity of human motions. In
this work, a new approach for the process of action recognition, based on the Implicit
Shape Model, is presented and evaluated. The Implicit Shape Model, a generalized
Hough-transformation, is descend from the appearance-based object recognition. The
aim of this work is the transfer of this method onto the problem of action recognition.
For the characteristic description of actions, video data from 3D recording systems
is transformed to a human body model from which angles between the human limbs
are calculated. By calculating the angular data for each time step, we can express
this information in a matrix where one row corresponds with one time step. Both the
input and sample action sequences are transformed to such an action descriptor. The
sample sequences represent action snippets like one step in walking or running actions.
Correspondences between the input sequence and the sample sets are then searched
with a radius search. This search takes one time step of the input sequence and finds
the most similar time step in all sample sequences. With this information, offsets to
the estimated actions represented in the sample set can be calculated. Votes for every
estimated endpoint are generated and within these votes, maxima can be searched with
Mean Shift mode seeking. The strongest of these maxima are then taken to output
a final statement of the behavior of the human subject. The aim of this approach is
the ability to detect basic human behaviors like walking and waving. The evaluation
shows, that the approach is working robustly and the recognition of actions like walking
is possible.
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Chapter 1

Introduction

When video content has to be analyzed, the main task is to answer the questions what,
where, when, how and why is something happening. The result should be understand-
able for humans and include semantic information. In person centric video analysis
the answer should contain the action of a person, e.g. Person A is walking from X to
Y. This can be achieved by analyzing the motion of a person on a formal basis. Such
a basis was introduced first by Johansson (Johansson 1973). Following Johannsons
claims, actions should be derived from the 3D pose of persons recorded over time.

Figure 1.1: Example output of an automatic video surveillance system which is able to
detect groups of persons and deduce their behaviors (Zaidenberg et al. 2011).

The visual analysis of human behavior is a challenging task. Machines which are able
to understand and interpret human behavior would lead to major improvements in
various applications like video surveillance, video indexing and searching, or robotics.
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Especially in video surveillance applications there is a great need for automated video
content analysis because human operators in front of many screens are not able to
detect all objects and situations of interest. This human based surveillance is also very
cost-intensive and in most scenarios, where many cameras are placed, these systems can
be seen as passive systems where video data is analyzed after an event took place and
often the videos are never watched. One can imagine, that an automated computer-
based surveillance system, which is able to detect and recognize persons (as shown in
Figure 1.1) would be a great step forward. If this system also is able to gain knowledge
of certain actions and sending alerts if a suspicious object or human is found, it would
have a huge market potential and therefore this topic is a very attractive field of
research.

Another major application of analyzing video content arises with internet portals as
YouTube1 or Vimeo2. On these websites, users share huge amounts of videos among
each other. All videos have tags and titles which were set by the uploader to allow
searching for specific videos. But this tagging and indexing is error prone and imprecise.
The ability of searching for a certain type of action automatically without adding
additional information to a video would make indexing and searching in these databases
more efficient and implicates enormous potential for new applications.

Understanding human behavior is very complex due to the nature of human movements.
These movements are often ambiguous and context sensitive. For example in a station
a person might be running to catch the train or also because of fleeing from something.

One of the problems for action recognition are time differences in the execution of
actions leading to segmentation problems, for example the same waving behavior can
be performed very fast or very slow. Another challenge is that different actions like
running or walking are very similar and seem difficult to distinguish. Despite specialized
sensors, e.g. Microsoft Kinect3 or multi-camera systems, most available videos are
recorded under uncontrolled conditions with monocular sensor setups. This leads to
side effects like occlusions and the loss of information. All of these tasks lead to the
need of incorporating the uncertainty and complexity of human behavior during the
design of a system which is able to recognize actions.

An action recognition system based on visual input can be divided into three essential
steps (Gong & Xiang 2011). These are

1. Representation and modeling - Encode the information from the input.

2. Detection and classification - Searching for characteristics which allow the
classification of behaviors.

3. Prediction and association - Being able to predict future events based on the
information from past and current human motion data.

1http://www.youtube.com
2http://www.vimeo.com
3http://www.xbox.com/kinect

http://www.youtube.com
http://www.vimeo.com
http://www.xbox.com/kinect
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In the following chapters an action recognition process based on the 3D pose of the
human body is developed. All tasks named above can be found in this work including
the selection of an appropriate body model, an action descriptor and the association
between learned behavior examples and the current input data from videos. In the
next section, a more detailed view on the definition and the aim of this work is given.

1.1 Problem Definition and Aim of this Thesis

In this thesis, an approach of basic human action recognition based on 3D input data
of a human pose is designed and evaluated. Actions should be recognized from real
data like motion capture methods. The first step is to get the 3D pose of the human
body for every video frame. Therefore the motion capture data has to be transferred
to an appropriate human model which is easy to compute. The proposed action re-
cognition method is based on angles instead of absolute 3D positions, and these angles
must represent continuous trajectories over time. With these information, an action
descriptor can be built. By comparing each observed input descriptor with descriptors
from learned and labeled motion sequences, a statement of what the subject is doing
can be made. Throughout this thesis, the training sequences are snippets of actions and
no clustering or vector quantization methods are used due to simplification reasons.
The first task of the action recognition approach is to find correspondences between the
input sequence and the trained action sequences with a radius search. These corres-
pondences should generate votes and such votes are the main part of an Implicit Shape
Model based action recognition process. On these votes, maxima can be searched with
Mean Shift Mode seeking and then in the final step the most probable behavior of the
human in the input video should be returned.

1.2 Thesis Outline

The following chapter gives an overview of recent and past studies in this wide field
of research. Several approaches for the formal representation of actions are described
and solutions to the problems described in Chapter 1 are presented. Chapter 3 deals
with the basics of human motion modeling and action recognition. The theoretical and
mathematical background of the human body model used in this work is explained
as well as the input video format and the calculation of angles from the body model.
Also, the most important step which is the action recognition approach based on the
Implicit Shape Model is described in detail.
In the fourth chapter, an overview and details of the implementation are given including
code snippets from all important parts. This comprehensive action recognition frame-
work is then evaluated on several sample data sets in Chapter 5. Chapter 6 contains
the conclusion and gives an outlook for future work.



Chapter 2

Related Work

This chapter gives a brief overview of existing methods for the process of action rep-
resentation and recognition. As this topic is an active research field many different
approaches exist, covering the demands of various applications, e.g. video surveillance
systems or robotics. Therefore only a small extract of relevant related work can be
given in this section. Action recognition is the genus of several techniques: feature
extraction, action learning, action segmentation and action classification. All of these
are based on video data and an action model database (Weinland et al. 2011). The
result of these interacting parts should be a label for a specific action which can be
interpreted by humans. This chapter gives an overview of recognition methods based
on different representations of the temporal and spatial structure of actions. Further,
approaches for action segmentation are presented and finally solutions for the view-
invariance problem are mentioned.

2.1 Temporal and Spatial Action Representations

The difference between temporal and spatial action representations is the way how
action recognition is done. In the spatial domain action recognition can be based on
global image features which describe an image with only one vector (Lisin et al. 2005).
Alternatives are the usage of image features like edges and corners or statistical models
which describe the spatial distribution of local image features. Within the temporal do-
main, recognition is either based on global temporal signatures representing an action
from the beginning to the end, on grammatical models which describe the action se-
quentially, or on statistical models which i.e. describe distributions of observations over
time (Weinland et al. 2011). In the following two subsections some related methods
are presented.

2.1.1 Spatial Action Representation

A further distinction between spatial representation methods can be made by separat-
ing the approaches into body models, image models and local statistics. Body models

4
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represent the whole human body in contrast to image models, where only regions of
high interest from the body can be investigated. The third approach is independent
from body parts or image coordinates and uses small image regions which are described
by local features of an image. Some of these methods are described in the following
sections.

2.1.1.1 Body Models

(a) (b)

Figure 2.1: (a): Action recognition based on few light bulbs as dots by (Johansson
1973). (b): 3D Body model based on cylinders proposed by (Marr & Nishihara 1978).

When using a body model, a human pose is tried to be estimated. The pose can be
used for action recognition and is based either on direct 2D body models generated
from input data or on reconstructed 3D body models. Early work in this area was
done by (Johansson 1973). He discovered that human actions can be recognized with
information only about few characteristic points. Figure 2.1(a) gives an example of
a walking and running subject. These points are also used in actual Motion Capture
techniques. (Marr & Nishihara 1978) then introduced a 3D body model based on
cylindrical primitives including a hierarchy which allows one to define the granularity
as shown in Figure 2.1(b). It is possible to model one arm as a single cylinder as well
as all human limbs including fingers. This model was adopted and extended (Rohr
1994) and other models based on quadrics (Gavrila & Davis 1995) and splines where
also proposed. Motion capture techniques which are based on 3D coordinates, were
used by (Campbell & Bobick 1995) to perform action recognition based on patterns for
waving and twisting actions.
In contrast to 3D models several approaches using 2D data exist. Simple 2D stick
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Figure 2.2: 2D stick figure generated by line fitting to a silhouette (Niyogi & Adelson
1994).

figures as shown in Figure 2.2 are used by (Niyogi & Adelson 1994) as well as tracked
hand or head trajectories, where the 2D coordinates of these body parts are tracked
over time (Brand et al. 1997)

2.1.1.2 Image Models

The advantage of using image models instead of body models is that they are more
efficient and simpler in most cases. Global, image based representations, which are also
called holistic representations are based on features within a specific region of interest
(ROI). Due to their simplicity they can be computed fast and efficient, while being as
discriminative as body models (Weinland et al. 2011). One possibility of using an image
model is to correlate the images directly without previous feature extraction. In (Darrell
& Pentland 1993) this was done for some hand gestures with a static background by
comparing the recorded image to existing training data.
Silhouette and contour based image models are also often used due to the fact that
silhouettes as shown in Figure 2.3 and contours are easy to compute (Wang & Suter
2007). Two methods for modeling human motion have been used with silhouettes.
Quantized silhouette images as features together with Hidden Markov Models (HMM)
were used by (Yamato et al. 1992). Due to the assumption of independence between the
states in HMM models which makes overlapping features or long-range dependencies
difficult, (Wang & Suter 2007) uses Factorial Conditional Random Field (FCRF) based
motion modeling. Also the problem with noisy backgrounds where silhouette extraction
gets difficult was addressed by (Weinland & Boyer 2008) using the Chamfer distance
(Gavrila & Philomin 1999).
Another important class of image models is based on the optical flow. (Cutler & Turk
1998) defines ‘motion blobs’ of the optical flow, as shown in Figure 2.4(a) and action
recognition in this work is based on the number, motion, size and relative positions



7

Figure 2.3: Silhouettes of a running person (top) and block-based feature representation
which is used as a descriptor (Wang & Suter 2007).

(a) (b)

Figure 2.4: (a): The optical flow of a clapping action. The area where the main action
takes place is marked as a blob (Cutler & Turk 1998). (b): Optical flow of a far away
football player divided into its x and y components and then into four non-negative
channels (Efros et al. 2003).

of these blobs. In (Efros et al. 2003) the flow field is separated into the horizontal
and vertical optical flow components. These two fields are then half-wave rectified and
blurred which gives the motion descriptor as it can be seen in Figure 2.4(b). The main
advantage of optical flow based methods is that they are independent from background
subtraction but they rely on the assumption that differences of images are movement
and lighting and material changes are also detected as motion (Weinland et al. 2011).

Our last example of image models which is described here are gradient based ap-
proaches. One possibility is to calculate gradient fields the spatio-temporal (x, y, t)
direction and then build a histogram (Zelnik-Manor & Irani 2001) of these gradient
fields. These distributions are then used as descriptors (see Figure 2.5). An alternative
to gradient fields are the more robust Histogram of oriented Gradients (HOG) which are
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Figure 2.5: Distributions of gradients of different motion patterns (a) to (f) displayed
as a smoothed histogram (g) (Zelnik-Manor & Irani 2001).

locally normalized gradient histograms computed for overlapping image blocks (Thurau
& Hlavac 2008).
To summarize this chapter we can say that image models are simpler than body models
but sensitive to changes in view directions, body sizes and rely on strong assumptions
(Weinland et al. 2011).

2.1.1.3 Spatial Statistics

Action recognition can also be based on local features which are not body parts or image
coordinates. If an image is divided into small regions and local features are calculated
for every region, action recognition can be done using the statistics of these arbitrary
features. As a result, these methods are independent of detecting and localizing whole
humans or whole parts of humans because the video is decomposed in regions which
are not linked to such objects (Weinland et al. 2011).
One very popular approach was proposed by (Laptev & Lindeberg 2003). He extended
interest point detection in 2D (x, y) space, introduced by Harris, to 3D (x, y, t). Interest
points are spatio-temporal corners and can be used as features for object recognition,
because they are characteristic and comparable. Figure 2.6 shows the result of interest
point detection of waving action. With such an approach it is possible to detect walking
people and perform pose estimation. Another spatio-temporal interest point based
approach is based on 1D Gabor filters (Dollar et al. 2005). Also the very popular
SIFT descriptor (Lowe 2004) was used for action recognition by searching nearest
neighbors for the descriptors in training data and using a Hough transformation to
identify clusters agreeing on the object pose.
All presented methods above have in common that the detected features are unordered
and structureless. Therefore (Gilbert et al. 2008) proposes compound features which
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Figure 2.6: Local space time interest points of waving at different frequencies (Laptev
& Lindeberg 2003).

Figure 2.7: Adding structure to local features by introducing a part layer (Niebles &
Fei-Fei 2007).

are in fact a set of features. Every local feature is grouped spatially to form such a set.
Another possibility for structured local features is shown in Figure 2.7. The part layer
introduced in (Niebles & Fei-Fei 2007) combines a large number of features and allows
capturing similar body configurations or poses.

The advantage of statistical methods based on local features is their ability to adapt
to difficult scenes. No complex body or image modeling is needed in advance. In
(Weinland et al. 2011) however it is stated that the complexity of human actions will
make it necessary to combine statistical methods with spatial and temporal models.
Such combinations of spatial statistics and temporal models are presented in the next
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section.

2.1.2 Temporal Action Representation

Despite the spatial structure of an action as introduced in Section 2.1.1, the temporal
structure of an action is also a very important part in the action recognition processes.
The representation of temporal structures can be divided into three main categories
(Weinland et al. 2011): Action grammars which group features into categories and
define transitions between them, action templates which complete temporal blocks
of actions are learned, and temporal statistics which build statistical models of the
appearance of actions without dynamics. In the following several approaches for these
three categories are presented.

2.1.2.1 Action Grammars

Hidden Markov Models (HMM) are one of the most popular probabilistic graphical
models. For example a silhouette based approach as described in Section 2.1.1.2 is
combined with HMMs in (Yamato et al. 1992) to represent the sequences of silhouettes.
Another example among many others for the usage of HMMs is (Starner & Pentland
1995) were American Sign Language is recognized.

Figure 2.8: Two person interaction and tracked body parts which can be analyzed with
Bayesian Networks (Park & Aggarwal 2003).

Due to the fact that HMMs are sequential they lack the ability to model parallel and
independent movements in body parts. With the use of Dynamic Bayesian Networks
these limitations can be overcome. In (Park & Aggarwal 2003) such a model was used
for the recognition of interactions between two persons by analyzing the evolution of
poses of multiple body parts over time. An example is given in Figure 2.8. The body
parts are then put into a tree structure and then concatenated in pairs for representing
each of the two persons. Action recognition is then done with a Bayesian network.
Another method to use features which are not independent are Conditional Random
Field (CRF) based approaches as described in Section 2.1.1.2.
With action grammars one can reach very high modularity due to the properties of
the used models. HMMs for example allow high granularity and Dynamic Bayesian
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Networks are compositional. Therefore action grammars can handle large variations
in action speeds. On the downside, learning and evaluation processes are still difficult
when there are many action classes (Weinland et al. 2011).

2.1.2.2 Action Templates

Instead of using a layered and modular model as described in Section 2.1.2.1 a lot of
work was investigated in action templates. Such a template describes a whole block of
features for a sequence which is very long in contrast to previous described methods as
the optical flow.

Figure 2.9: Bobick and Davis uses two images as action templates: The binary Motion
Energy image (MEI) and the scalar valued Motion History Image (MHI) (Bobick &
Davis 2001).

One very popular work on action templates was done by Bobick and Davis (Bobick &
Davis 2001). The use two images for the representation of the history of an action as
shown in Figure 2.9. One is the Motion Energy Image (MEI) which is a binary image
that shows the areas where motion takes place are white. This image answers the
question ‘Where is motion’. The second question ‘How does motion moves the image’
is answered by Motion History Images (MHI) which pixels represent the history of
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movements. More recent movement areas are brighter than older ones. This concept of
2D action templates was extended to 3D Motion History Volumes (MHV) in (Weinland
et al. 2006).
The main disadvantage of such template models is their inability to cover changes in
speed and time. This can be resolved by multiple training sets, but this is not the best
solution. Solutions to this problem are learning methods including neural networks
(Guo et al. 1994) or normalizing the duration with dynamic time warping (DTW) as
used in (Darrell & Pentland 1993).

2.1.2.3 Temporal Statistics

Another promising research direction are statistical models without an explicit model
of dynamics (Weinland et al. 2011). This allows recognizing actions from still images.
In (Carlsson & Sullivan 2001) this was successfully done for fore- and backhand strokes
of tennis players. In that work, one keyframe for each action was defined and matched
to frames from the input sequence.

Figure 2.10: Action recognition process based on snippets (Schindler & van Gool 2008).
This Figure shows the process of matching results from 1D Gabor filtering (upper half)
and optical flow (lower half) to form and flow templates for a final action statement.

That keyframe based method was extended in (Schindler & van Gool 2008) to snippets,
which are sequences of maximum 10 frames length. In this work it is stated that such
snippets are sufficient to recognize actions. Figure 2.10 shows the recognition process.
From the input sequence two descriptors are calculated. The upper half which is called
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‘form pathway’ 1D Gabor filters are applied onto the detected features and matched
to learned templates. In the lower half which is called ‘motion pathway’ optical flow
extracted from different scales and speeds also matched to template data. MAX in the
picture means MAX-pooling, i.e. that only the best features are taken into account
to reduce complexity. Both similarity scores, which are the result of the template
matching, are then concatenated and finally classified with a one-versus-all support
vector machine.

Figure 2.11: Different types of SIFT descriptors. From left to right: original 2D SIFT
descriptor, 2D SIFT for videos, 3D SIFT descriptor (Scovanner et al. 2007).

Video sequences can be also described with histograms of feature occurrence over time.
This can be done with a 3D SIFT descriptor as shown in Figure 2.11 which returns
vectorized histograms (Scovanner et al. 2007). In general, action recognition with
temporal statistics can be implemented very efficient and is very discriminative. One
the other hand, not every action can be described with a model of the dynamics like
two actions with the same poses but different temporal order. (Weinland et al. 2011).

2.1.3 Segmentation

Up to now, almost all mentioned techniques for action recognition work on short clips
which include only one action. A video normally contains different kinds of actions
which have to be separated. In general, this is almost the same problem as action
recognition itself. The approaches for action segmentation can be classified into three
main categories (Weinland et al. 2011) which are presented in the following sections.

2.1.3.1 Boundary Detection

A common approach for segmentation is to divide the video at boundaries as special
values in acceleration, curvature, and velocity of motions. The aim is to achieve seg-
mentation at a lower processing level than action recognition. In (Marr & Vaina 1980)
movements are segmented into motion segments and static rest states defined with
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the body model in (Marr & Nishihara 1978). These static states, which can be local
minima, can be interpreted as transitions between movements.

Figure 2.12: The vertical axis shows values of the characteristic difference between the
optical flow and the mean optical flow of foreground pixels which can be taken into
account for the segmentation of movements (Ogale et al. 2004).

Another possibility for boundary detection is to detect minima and maxima of the
optical flow by comparing the optical flow of a foreground pixel which lies within the
body with the mean optical flow at the same position, as shown in Figure 2.12. If
that value is near to zero, an extreme body pose is indicated. Maximum values can be
interpreted as large movements in all areas (Ogale et al. 2004).
All segmentation methods using boundary detection have in common that they have
problems with simultaneous movements.

2.1.3.2 Sliding Windows

A very straightforward approach are sliding windows. Videos are divided into overlap-
ping segments and the classification process is done on each of these segments. Then
the most likely movement is assumed at the maximum of the cumulated classification
scores. As a consequence the segmentation process relies on the results of the recogni-
tion process and is therefore inapplicable in the training stage. It is also expensive to
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compute. But if a classification process is already implemented, these methods can be
easily integrated (Weinland et al. 2011). Approaches based on sliding windows can be
used with templates (Ke et al. 2005, Darrell & Pentland 1993) or grammars ((Wilson
& Bobick 1999)).

2.1.3.3 Grammar Concatenation

Figure 2.13: Network of HMMs used for action recognition. One HMM with 3 hidden
states exist for every action and every feature. When the parameters of each HMM
are learned, the most probable action sequence can be computed with the forward
algorithm (Lv & Nevatia 2006).

In Section 2.1.2.1 the temporal representation of actions with grammars was described.
Action grammars can be extended by making them also applicable to allow transitions
between different actions itself instead of only different states within an action. Also,
different actions can be concatenated. This leads to complex structures with similarities
to HMMs and therefore efficient algorithms like Viterbi for finding the most likely
sequence of states are applicable. Examples for the usage of such structures can be
found in (Brand & Kettnaker 2000) or in (Lv & Nevatia 2006).

2.1.4 View Indepence

A desirable feature of an action recognition process is to be independent of the viewing
angle. Strategies to achieve this aim can be classified into normalization, invariance
and exhaustive search. In the following sections some examples for these strategies in
2D and 3D space are presented.
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2.1.4.1 Normalization

Normalization means that all results are transferred into a common coordinate frame
to achieve comparable results. This is normally done by estimating the difference to
the common frame and diminishing it. In 2D images this is often done by extracting
a rectangular around the object followed by scaling and orientation as described in
Section 2.1.1.2. Another possibility in 2D images is to estimate the 3D position of
a person from its walking direction with knowledge of the camera calibration (Rogez
et al. 2006).

Figure 2.14: Generated new views from three completely different real camera views
(Bodor et al. 2003).

In 3D the walking orientation was also used for orientation normalization. One example
can be found in the work from (Bodor et al. 2003). As shown in Figure 2.14 this method
creates new views out of real camera views. These views can be either used to generate
orthogonal views for every input or to generate new views for additional training data.

In general, these methods work well if the walking direction is available or other cues
as a full body model can be computed (Weinland et al. 2011).

2.1.4.2 Invariance

In contrast to methods which rely on normalization, view-invariant methods remove
the view dependent information during the feature computation. In the 2D space, this
can be done by regarding the frequency of occurrences instead of image features. This
histogram based method was used by (Zelnik-Manor & Irani 2001) and described in
Section 2.1.1.2.

In 3D, view invariance can be achieved with a different approach. In (Weinland et al.
2006) Motion History Volumes are used as action descriptors. Fourier-magnitudes and
cylindrical coordinates are used to encode motion templates with invariant rotations
around the z-axis.
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2.1.4.3 Exhaustive Search

The third possibility for view invariant action recognition is exhaustive search. Instead
of choosing a transformation for normalization or relying on invariant features it is
possible to search over all transformations. This can be done either for 2D or 3D views
(Weinland et al. 2011).

Figure 2.15: Generation of multiple views for training data. The exhaustive search is
performed on such a dataset to find the best match (Ahmad & Lee 2006).

In 2D examples for exhaustive search methods can be found in (Ahmad & Lee 2006)
where 8 cameras are used for recording the training data as shown in Figure 2.15.
Then the input view is matched against all training views and then the best match is
extracted with exhaustive search. In the work on Motion History Images (see Section
2.1.2.2) 7 cameras are used for recording and the training data. The recognition process
takes the input of 2 cameras. Then the best match between multiple view represented
by 90 degree rotations is determined (Bobick & Davis 2001).

The use of an internal 3D model with explicit variables for 3D position and orientation
brings more flexibility to changes in the camera set-up (Weinland et al. 2011). Given
the camera parameters all possible 2D view observations can be computed out of the
3D data. On these dataset the best match to the input 2D observation can be found
with exhaustive search. An example is given in Figure 2.16, where image silhouettes
generated from a 2D view are matched to silhouettes generated out of the 3D training
data.
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Figure 2.16: Examples for an exhaustive search method to match an observed silhouette
to silhouettes generated from a 3D prototype. In this figure the best match is shown
in the middle row (Weinland et al. 2007).

2.2 Human Sequence Evaluation: the Key-Frame

Approach

In the work of Jordi Gonzàlez (Gonzàlez 2004) the problem of transforming image data
into conceptual descriptors is addressed. The whole system is called Human Sequence
System.

In the first part of that work, a human body model is proposed. The body model is
used to describe human actions. This model is based on a stick figure with 15 joints
and 12 limbs and is similar to the model used in later parts of this work. Procedures
for acquiring data from 3D motion capture techniques and transferring them onto the
body model are proposed. Furthermore different ways of describing the angles between
the limbs are discussed.

These angles are then transformed into a pose descriptor. Such descriptors can be ex-
tracted from several training sequences in order to learn different human movements.
The training actions are projected into the aSpace by Principle Component Analysis.
This step reduces the dimensionality. The advantage of the aSpace is that the distance
of the actions can be calculated faster. In the work from (Gonzàlez 2004) nine actions
like sit, run, and walk are examined. For generating the aSpace, the required dimen-
sionality has to be determined first. This is done by calculating mean postures and
a covariance matrix of these. The dimensionality is then determined by eigenvalues
of the covariance matrix. These eigenvalues express the mode of variation of a pose
during an action. Then, each sample is projected into the aSpace and a mean manifold
is determined. Some key-frames are selected out of the mean manifold by applying a
distance function and finally, the prototypical action representation is an interpolation
between these key-frames.

The so called key-frames are searched in order to reduce the number of frames which
must be compared. Therefore, characteristic frames for an action are needed and this is
done by determining frames which are the least likely body postures during an action.
Examples for such frames are shown in Figure 2.17.
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Figure 2.17: Detected key frames for a walk action. (Gonzàlez 2004).

By comparing such key frames from the training data with the input data from a video,
human action recognition can be performed. Other applications are the synthesizing
of virtual sequences which reproduce an action and comparisons of different human
actions like walking of a male and female.

2.3 Implicit Shape Model based Action Recogni-

tion Methods

Figure 2.18: Pipeline for action recognition using the Implicit Shape Model (Thi et al.
2010).

The Implicit Shape Model (ISM) (Leibe et al. 2008) is a method for detecting objects
in images and it is explained in Section 3.2 in detail. It has been adapted for the
recognition of actions in (Thi et al. 2010). Instead of 2D interest points like Harris
Corners, Space Time Interest Points (STIP) are searched to detect points with high
motion change and also a region around this points is taken into account. Some of
these points are affected by noise from the background and therefore a Sparse Bayesian
Machine is incorporated to allow the distinction between relevant and background
points. In contrast to the original ISM where the object center is detected, local action
centers are used for the voting process in the approach from (Thi et al. 2010). These
centers are found by decomposing videos into temporal slices or key frames and look for
local action centers in each of them. The global action centers can be determined by
searching the centroid of all local action centers along their trajectory. In that voting
space a Mean Shift search is used to find the most possible action center.



20

2.4 Summary

In this chapter, an overview of relevant work in the different parts of an action recogni-
tion process has been given. This includes different methods for action representation
like temporal and spatial approaches. Also methods for the segmentation of differ-
ent actions are presented as well as solutions to achieve view independence. The last
section covers a work were a similar body model as in our work was used.
Because of the the fact, that the Implicit Shape Model only needs a small number of
training examples and its flexiblity, we decided to adapt the ISM, an object recognition
approach, to human action recognition. Other advantages of the ISM are the ability
of handling with incomplete data and its efficient implementation. To achieve view
invariance, we have chosen to describe actions with a 3D human body model based on
3D input data.



Chapter 3

Basics of Human Motion Modeling
and Action Recognition

In this chapter approaches of modeling human motion from sampled data and the action
recognition approach which is used in this work are described. The structure of the
following sections corresponds with the data processing in the implemented framework.
For the representation of actions a human model is needed. One of these models is
the stick figure model which is explained in the following section. After transferring
input data from 3D Motion Capture techniques onto this model, a high dimensional
descriptor based on relative joint angles and their derivations is created.
With such a descriptor the generation and comparison of training data with input data
from a video is possible. This is done with a nearest neighbor radius search for each
training sample and the observed action. Finally, the maxima of the nearest neighbor
search results are determined with a Mean Shift search for the final statement of the
action the subject in the input video performs.

3.1 Human Body Model

Selecting a sufficient human model is always a tradeoff between the realism and the
computational complexity. On the one hand the model has to be accurate enough
for representing all kind of human motion, on the other hand, it should be easy to
compute. The model used in this work is a stick figure with 12 limbs and 15 joints,
which is the same as in (Gonzàlez 2004). While allowing fast and efficient computations
it still carries enough information about the pose of the human body. This model was
adapted from (Cheng & Moura 1999).
The model as shown in Figure 3.1(a) has its root in the hip. The kinematic chains are
starting from the hip to all endpoints. Kinematic chains in general are systems of rigid
bodies connected with joints and are used for describing motion. As a consequence,
every limb and joint is described with respect to its parent, where the parent is the next
element in direction to the root. This topology is a tree structure allowing the analysis
of specific moving body parts without having to take the full model into account. The

21
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Figure 3.1: (a): Stick figure model with 12 limbs and 15 joints. (b): Placement of the
41 markers used for creating data for the CMU Graphics Lab Motion Capture Database
(CMU n.d.c). These positions are transferred to the stick figure model (CMU n.d.a).

position of the ankle is for example expressed only relative to the position of the knee.
The advantage of simple stick figures is that it is still possible to do segmentation and
matching tasks because the geometric structure is kept sufficient (Ferrer 2005).
The original data comes from motion capture techniques, where several easy detectable
reflecting markers on a human body are recorded by cameras. The marker positions
have to be transferred to the stick figure model, because there are more markers than
limbs in our model. This can be done by interpolation, for example one can take the
mean between the right and left forehead marker (RFHD and LFHD in Figure (b))
and use it as the head in the stick figure model.

3.1.1 Stick Figure Model

A quite simple body model is to store 3D positions of the relevant parts. This method,
which is easy to compute, has some disadvantages. One is, that the 3D positions of
one person which repeats an action differ between the measurements due to different
relative orientations between the person and cameras. Another reason is that the limb
lengths are not the same between different persons. The results are incomparable due
to these drawbacks and measuring the similarity of actions becomes a very difficult
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task. A better and more robust way is to calculate the 3D orientation of adjacent
limbs which are independent from the size of a limb (Ferrer 2005). Several techniques
exist to express 3D orientations. They are discussed in the following sections.

3.1.1.1 Rotation Matrices

Z

Y
X

z

x

y
Zy

Xz

Yx

Figure 3.2: Visualization of the angles of the rotation matrix with a local coordinate
system (x, y, z) and a global coordinate system (X, Y, Z).

With a 3× 3 rotation matrix it is possible to express a rotation of a local system with
regard to a global system. Each 3D unit vector (x, y, z) is expressed by components of
the global reference system (X, Y, Z). By dividing each component of the unit vector
through its length we receive the cosine of the axes in respect to each axis of the global
system. These cosines can be written in R ∈ R3×3 as cosAb, with A referring to the
axis of the global system and b to the local respectively. Each row of this matrix is
corresponding to one axis of the global system and each column to those of the local
system (Zatsiorsky 1998).

The resulting matrix is

R =



cosXx coxXy coxXz

coxY x coxY y coxY x

coxZx coxZy coxZz


 (3.1)

With such rotation matrices, several rotations can be expressed with one matrix R by
multiplying them in the right order. This order has to be preserved because the multi-
plication of matrices is not commutative. The disadvantage of R is that 9 parameters
have to be set. A 3D rotation can be expressed with only 3 parameters, so there is
redundancy in this matrix which makes computations error-prone. A more compact
way to express rotations are Euler angles, which are described in the following section.
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Figure 3.3: Visualization of a rotation with the angles (α = 90◦, β = 90◦, γ = 15◦) with
the Zy′z′′ convention.

3.1.1.2 Euler Angles

With Euler angles, rotations are made in a specific sequence. There are 12 possible
sequences of the 3 rotations which are possible in 3D space due to the fact that rota-
tions are not commutative. The first rotation is always around an axis of the global
coordinate system, the second and third rotations are expressed relative to already
rotated axes. The notation of rotations with Euler angles is Ab′c′′ where A is the first
rotation relative to an axis (X, Y, Z) from the global reference system, b′ is the second
rotation with respect to a local axis (x′, y′, z′) from the coordinate system resulting
from the first rotation and c′′ is the final rotation around the local axis. The ′ indicate
the number of previous rotations. Allowed combinations of rotation axes are Ab′c′′ with
different A, b and c and Ab′a′′ with different A and b (Zatsiorsky 1998). An example of
one combination is shown in Figure 3.3. Euler angles can also be expressed as rotation
matrices:

R = [Rz][R
′
y][R′′x] =



cosα −sinα 0

sinα cosα 0

0 0 1






cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ







1 0 0

0 cosγ −sinγ
0 sinγ cosγ




(3.2)
Despite the advantages of simplicity and easy geometrical interpretation of Euler angles,
there are some implicit disadvantages. One is that in particular positions Euler angles
cannot be defined. These are so-called singular or gimbal-lock positions and occur,
when the x- and z-axis are in the same order after rotating the y-axis. The values of
the first and third angle cannot be determined at this point because it is impossible
to choose a rotation axis. As an example you can imagine a human doing a 90 degree
left turn. It is impossible to distinguish if the rotation was around the global or the
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local y-axis (Zatsiorsky 1998). For example, in a robot system singularities could lead
to unexpected movements of an end effector.

Figure 3.4: Angle values jump between−π and π which is a problem in the computation
of a human body model and should be avoided (Ferrer 2005).

Other problems with Euler angles are the lack of interpolation facilities and difficulties
with periodicity. If an object is rotated 360 degrees around an axis, there will be a
leap between 0 and 360 degrees as shown in Figure 3.4. This is a problem if continuous
data is required (Ferrer 2005).

3.1.1.3 Quaternions

Quaternions are a more sophisticated way to express rotations. A Quaternion is an
extended complex number with one real and three imaginary parts (Stahlke 2009):

Q = [q0, q1, q2, q3] = q0 + iq1 + jq2 + kq3 = [q0, ~q] (3.3)

The rules for mathematical operations are defined as follows:

i2 = j2 = k2 = ijk = −1 (3.4)

ij = −ji = k (3.5)

jk = −kj = i (3.6)

ki = −ik = j (3.7)

Before one is able to rotate with Quaternions some definitions are needed. The complex
conjugate is defined as Q∗ = [q0,−~q], the norm as |Q| =

√
Q∗Q = [q20,−~q2] and the

inverse element as Q−1 = Q∗

|Q|2 .
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To perform a vector rotation the vector ~v first has to be transformed into a Quaternion
v̂ by v̂ = [0, ~v]. With the rotation Quaternion

q = cos(
θ

2
) + vsin(

θ

2
) (3.8)

where v is the rotation axis, e.g. (1, 0, 0) for the x. θ is the angle with which v can be
rotated by calculating

~v′ = q~vq∗ = q~vq−1 (3.9)

regarding the fact that |q| = 1⇔ q∗ = q−1.
The main advantages of Quaternions are that there are no singularities, interpolation
can be done by simple operations and they are very compact. However, Quaternions are
not directly geometrically interpretable and we need 4 values to describe a 3D rotation.
Another drawback is, that for translations more complex dual Quaternions are needed.
In dual Quaternions, the 4 real numbers are exchanged by dual ones resulting in more
costly calculations for multiplication. Therefore, we use an alternative way of describing
angles which is described in the following section.

3.1.1.4 Length Independent Human Body Modeling

In (Ferrer 2005), the human body and its pose are modeled as a tuple of 3D coordinates
from the start and endpoints of the 12 limbs. Therefore 15 tuples (xi, yi, zi) for start
points and end points (xj, yj, zj) of a limb exist. To achieve independence of the length
of the limb and due to the fact that Cartesian coordinates are not the best solution
when considering linear approaches for posture variation modeling, the limb locations
should be expressed in angles. But the angles are not chosen direct. Instead, a polar
coordinate system is used. This system is continuous within any symmetric range, e.g.
[−π, π].

φ = tan−1
(

yi − yj√
(xi − xj)2 + (zi − zj)2

)
(3.10)

θ = tan−1
(

xi − xj√
(yi − yj)2 + (zi − zj)2

)
(3.11)

ψ = tan−1
(

zi − zj√
(xi − xj)2 + (yi − yj)2

)
(3.12)

One limb is described in polar coordinates by the 3 angles longitude ψ, latitude θ and
elevation φ (see Figure 3.5). These angles can be directly computed using the 15 tuples
as presented in the Equations (3.10),(3.11) and (3.12).
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Figure 3.5: A limb of the stick figure model described with 3D polar coordinates as
described in (Ferrer 2005).

φupperleg

φlowerleg

φ̃leg

Figure 3.6: Visualization of a relative angle φ̃leg between two limbs.

With this method of describing the limbs orientation, angle values lie between [−π
2
, π
2
]

and the discontinuity problem does not exist anymore. This is done by modeling the
limb orientation by two different angles (Ferrer 2005). After calculating the angles with

the Equations (3.10),(3.11) and (3.12), the relative angles ψ̃, θ̃ and φ̃ of two adjacent
limbs can be easily determined by subtracting the limbs angular value from the angular
value of its parent. An example of a relative angle is shown in Figure 3.6, the angle φ̃leg
is then φlowerleg − φupperleg. After doing this for all angles we have 36 relative angles.
In addition to these values, the variation of the height of the hip is also added to the
final body model, which is expressed as follows:
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xs = (us, φ̃1, θ̃1, ψ̃1, ..., φ̃12, θ̃12, ψ̃12) (3.13)

In order to calculate these angles and further use them for action recognition, the input
data needs to be prepared to achieve view invariance. Necessary preparation steps are
explained in the following section.

3.1.2 From Motion Capture Data to Relative Angles

In the following subsections the generation of a stick figure model from raw three
dimensional data points is explained. Based on this model, the calculation of angles
and their derivations is explained.

3.1.2.1 Motion Capture and the C3D File Format

The 3D data source in this work is the CMU Graphics Lab Motion Capture Database
(MoCap) (CMU n.d.b). This database contains several hundreds of datasets describing
various actions of different persons in daily situations like walking, running, jumping
etc. It is organized into Subjects and Trials and all files are indexed like x − y.c3d
where x is the subject index and y is the trial number. The movies in this database
are recorded at a sample rate of 120 Hz using 12 cameras around a rectangular area in
which the actions are performed by people wearing markers as shown in Figure 3.1(b).
The 3D coordinates from the 41 markers are stored directly in binary c3d (Dainis 1987)
files.

Header section (512 bytes)

Parameter section (one or more 512 byte blocks)

Data section for 3D and analog data (one or more 512 byte blocks)

Table 3.1: Structure of a c3d file.

In these c3d files data can either be stored as 16-bit integers or floating point values.
Each c3d file is structured into 512 byte blocks, where at least 3 blocks must exist to
have a regular c3d file as shown in Table 3.1. The first mandatory block in each file
is the 512 byte long header, which describes the format of the data. This header for
example holds the number of frames and the number of data points per frame. It also
includes a pointer to the parameter section. Within the parameter section, the data
points are described in detail, e.g. that the 8th entry in each frame is the marker LFHD
(left forehead) and also a pointer to the start of the data section is stored. This pointer
must be used to locate the start of the data section. Within the data section, the data
is stored frame by frame in 512 byte blocks and the last block is filled with zeros.
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With the usage of such c3d files, we always receive a valid and complete 3D pose of
our stick figure by converting the markers as described in the next section.

3.1.2.2 Transferring the CMU Database into the Stick Figure Model

The CMU Database contains 3D coordinates of 41 markers, which are named after
their position as shown in Figure 3.1(b). It is noticeable, that these markers have an
offset to the real position of the joint because they lie outside the body outline. But
for our purposes this position error is tolerable. These markers have to be transformed
onto our 15 joint stick figure model. Some of the stick figure joints can be initialized
directly from the marker locations while others have to be calculated as the average of
several marker locations. The formula for this calculation is

average(~x, ~y) =
1

2
(~x+ ~y). (3.14)

Stick figure Joint Source data

left hip average(LFWT,LBWT)

right hip average(RFWT,RBWT)

left shoulder LSHO

left elbow LELB

left hand LWRB

right shoulder RSHO

right elbow RELB

right hand RWRB

left knee LKNE

left foot LHEE

right knee RKNE

right foot RHEE

neck average(LSHO,RSHO)

head average(RFHD,LFHD)

hip average(left hip,right hip)

Table 3.2: Correspondence of stick figure joints and Motion Capture markers.

The way of generating the coordinates of the 15 stick figure joints is described in Table
3.2.
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3.1.2.3 Normalization of the Stick Figure to Achieve View Invariance

The stick figure, which was defined in Section 3.1.2.2, is expressed in a world coordinate
system. To achieve view invariance, we need to express the stick figure in a local co-
ordinate system, equal the orientation and also norm the size of the figure. This is done
with an affine transformation of each coordinate of the stick figure. The transformation
includes a translation, rotation and scaling.

The origin of the local coordinate system is placed in the middle of the left and right
hip. This point is taken as the translation vector ~vt of the affine transformation.

The scale factor s is the length of the spine from the first available frame.

To rotate every figure to the same orientation, we generate a matrix (bTx , b
T
y , b

T
z ) ∈ R3×3

with

~bx = ~vt − rightHipCoordinate (3.15)

~by = ~bx × (~vt − neckCoordinate) (3.16)

~bz = ~bx × ~by (3.17)

Mrot =

[
~bx ~by ~bz 0

0 0 0 1

]
(3.18)

Mtrans =

[
0 0 0 ~vt

0 0 0 1

]
(3.19)

Mscale =




s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1


 (3.20)

All these operations are expressed in three homogeneous R4×4 matrices Mrot (3.18),
Mtrans (3.19), Mscale (3.20). The affine transformation matrix from 3D world coordin-
ates to a normalized person centric coordinate system is then calculated as

A = (Mtrans ∗Mrot ∗Mscale)
−1 (3.21)

A stick figures 3D coordinate (x, y, z) can then be transformed by generating a homo-
genous vector and multiplying it with A. The result is shown in Figure 3.7 which also
shows that a person walking in different directions is normalized so that it is always
oriented into the same direction.
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(a) (b)

(c) (d)

Figure 3.7: (a): Frame 276 of a walk action (Subject 139, Trial 30) from the CMU
Motion Capture database. (b): Frame 833 of the same walk action in world coordinates.
(c): Frame 276 of the same walk action in normalized coordinates. (d): Frame 833 of
the same walk action in normalized coordinates.

3.1.2.4 Calculating Absolute and Relative Angles

With a normalized stick figure, calculation of limbs angles can be done with the Equa-
tions (3.10), (3.11), and (3.12). As we have 15 joints in our model the resulting number
of limbs is 12.

After calculating all angles we have 36 angular values which can be expressed as relative
angles with respect to their parent limbs following kinematic chains, as described in
Section 3.1.1.4. This is done due to the fact that relationships in movements between
different limbs exist which we want to incorporate (Gonzàlez 2004). By calculating all
relative angles from one time step, we receive the vector xs holding all relevant values
of every frame. An example of such angular values over time is depicted in Figure
3.8. It is noticeable that there are no leaps in the curve as shown in Figure 3.4. To
incorporate the rate of change of these angular values into our action descriptor, we
also derivate the values. The methods of derivations up to the order two are explained
in the following section.

3.1.3 Derivation of Relative Angles with Numerical Methods

For the action recognition process it is also useful to have a look at the rate of change
of the relative angles. Therefore the first and second derivations of the relative angles
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Limb start Joint end Joint

hip limb left hip right hip

shoulder limb left shoulder right shoulder

spine middle of the hip neck

neck limb neck head

left upper arm left shoulder left elbow

left lower arm left elbow left hand

right upper arm right shoulder right elbow

right lower arm right elbow right hand

left upper foot left hip left knee

left lower foot left knee left foot

right upper foot right hip right knee

right lower foot right knee right foot

Table 3.3: Limbs of the stick figure model with their start end points.

over time are computed. For the discrete angular values this can be done by calculating
the differential quotient between subsequent data points. The differential quotient can
be calculated in three ways:

forward : f ′(x) =
f(x+ h)− f(x)

h
(3.22)

backward : f ′(x) =
f(x)− f(x− h)

h
(3.23)

symmetric : f ′(x) =
f(x+ h)− f(x− h)

2h
(3.24)

Since we have values for successive frames we can set h = 1 to calculate the derivations.

3.2 Implicit Shape Model based Action Recogni-

tion

The action recognition process in this work is based on the Implicit Shape Model (ISM).
The ISM approach is very popular for object recognition and tracking (Jüngling 2011,
Leibe et al. 2008) and will be explained in the following sections, including its adaptions
to action recognition.
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Figure 3.8: This figure shows the calculated absolute and relative angle values of φ over
time of the left and right foot from a walk action (Subject 139, Trial 30) of the CMU
Motion Capture database (a): Left foot relative angle φ. (b): Right foot relative angle
φ. (c): Left foot absolute angle φ. (d): Right foot absolute angle φ.

3.2.1 ISM - a Brief Overview

Object recognition in images based on the ISM has two phases. During the training
phase which is shown in Figure 3.9, local and characteristic appearances of an object
are learned and clustered to get an initial codebook with prototypes. This can be done
in images for example by detecting characteristic local features like Harris Corners
and extract a region around these corners from the image. Detected features are then
clustered and a prototype is generated from each cluster by calculating the cluster
mean. In the codebook, the prototype is stored together with its occurrence locations
as offsets with respect to the objects center.

During the second phase which is the recognition phase, local features are detected with
the same technique as in the training phase, as shown in Figure 3.10. For each feature,
the best matching codebook entries are searched and stored and for each detection,
a probability of the match is stored also. All of these matches vote for the center of



34

Figure 3.9: The ISM training phase with the extraction of interest points (yellow
circles), the clustering and generation of mean samples called prototypes and the final
codebook which contains the prototypes and the spatial occurrence of these prototypes.
These positions are relative to the objects center (Leibe et al. 2008).

Figure 3.10: The ISM recognition process as proposed in (Leibe et al. 2008).

the object according to the stored offsets in the dictionary. This voting process results
in a Probabilistic Hough Voting space, containing votes for 3D positions. The third
dimension is the scale of the object. This voting space then is separated into bins to
determine candidates for maxima. In regions around these candidates, the maxima
are searched using Mean Shift mode seeking. With the found maxima, back projected
hypotheses can be generated providing rough indications of the object location. An
optional last step segments the background from the patches in the hypotheses to get
a pixel based figure-ground segmentation.

3.2.2 Adaptions to the ISM

The general idea of the thesis is to apply the ISM method to the problem of action
recognition. The dictionary for our ISM based action recognition approach consists
of several actions which are described with action descriptors. This can be a walk
action from the contact of the left foot on the ground until it reaches the ground again.
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These action snippets are selected manually from CMU files. Codebook generation as
described in (Jüngling 2011) is not part of this work, we treat every action sample
independent from each other. Instead of saving the objects center, we use the end of
an action as votes. All training samples for one action type represent exact the same
action with the same start- and endpoint.

By searching the nearest neighbor from the actual time step of the whole input sequence
in all time steps of a codebook entry, we receive an offset to the probable end of action
represented by the codebook entry. It is not necessary to look for interest points in the
input data as we only get relevant 3D coordinates. With these offsets which represent
the number of time steps to the end of an action, votes for the end of an action
are generated and saved into the voting space. Then, maxima of votes for ends are
searched with Mean Shift. The details of this procedure are described in the following
subsections.

3.2.3 Building a Descriptor for Action Recognition

Figure 3.11: Visualization of the values in the descriptor for a walk action. The image
is a greyscale image with values between 0 and 255. To show the hip values clearly,
the colors of the hip and its derivations are set to darker values.

To describe actions a frame based descriptor is used. For every frame the descriptor
holds 117 values including relative angles, their first and second derivatives and the hip
position and its derivations. The final descriptor is then a matrix ∈ R(NumberOfFrames)×117.
The 117 values in one row of the descriptor are composed of the following elements:
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dframe = (hipx, hipy, hipz, φ̃1, θ̃1, ψ̃1, ..., φ̃12, θ̃12, ψ̃12,

hip′x, hip
′
y, hip

′
z, φ̃

′
1, θ̃
′
1, ψ̃

′
1, ..., φ̃

′
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′
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′
12,
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′′
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′′
1, θ̃
′′
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′′
1 , ..., φ̃

′′
12, θ̃

′′
12, ψ̃

′′
12)

T

These values include the hip position and their rate of change as well as all relative
angles and their derivations. With this descriptor, both training samples in the diction-
ary and the input data as shown in Figure 3.11 are encoded. This allows the comparison
of training data with input data. The details of this comparison are described in the
next section.

3.2.4 Codebook Entries and Voting

Since codebook generation is beyond the scope of the thesis, we use the descriptor
of a training sequence as an action prototype. Having a codebook of prototypes for
a specific action and a descriptor -in our case some c3d files-, we cycle trough the
descriptor of the input video per frame. All action prototypes are represented with the
action descriptor proposed in Section 3.2.3.
For each time step of the input video, we look for the nearest neighbors in each codeword
of the training dataset whose distance is below a threshold. The results are positions
in the analyzed training data descriptor which can be interpreted as the most probable
point in time of what the subject in the video is compared to the action in the codeword.
For each nearest neighbor which is valid, an offset between the actual time step in the
input sequence and the estimated end of the action represented by the codeword is
calculable. Using this offset, a vote for the end of the action can be made from every
valid nearest neighbor. The threshold for the nearest neighbor search is set manually
and evaluated later.
The whole algorithm is described in Algorithm 1. All votes are stored with the vote-

ForEndOfAction(codeword,voteIndex) function, which allows the accumulation of
votes and then the search of maxima. The threshold helps to sort out any nearest
neighbors which do not match well. Within this function, a reference of the codeword
is stored together with the voteIndex. The FLANNSearch() function returns a mat-
rix which holds the nearest neighbor’s indices of the actual frames descriptor in all
frames of one training example. Details of the Fast Library for Approximate Nearest
Neighbors (FLANN) are described in the following section.

3.2.5 Approximate Nearest Neighbor Search

FLANN is a library supporting C, MATLAB, and Python which performs fast approx-
imate nearest neighbor search. It automatically choses the best algorithm for a dataset
and can reach an improvement in speed of several orders of magnitudes compared to
other algorithms, e.g. linear search (Muja & Lowe 2009). There are two algorithms
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Algorithm 1: Voting with approximative nearest neighbor search.

for i← 1 to numberOfFrames do
foreach codeword c do

nearestNeighborIndices← FLANNSearch(inputDescriptorRow(i), c);
foreach nearestNeighborIndex do

if nearestNeighborDistance < THRESHOLD then
voteIndex← i + ((c).length - nearestNeighborIndex);
voteForEndOfAction(c, voteIndex);

end

end

end

end
searchForMaximaInAllV otes();

which perform very well. One searches hierarchical k-means trees with a priority search
order and the other one uses multiple randomized kd-trees.

Figure 3.12: Priority based nearest neighbor search in a kd-tree as proposed in (Silpa-
Anan & Hartley 2008). First, the tree is descended until the query point, which is
labeled with a 1, is reached. Then, the neighbor cells are searched, which are the nodes
2 to 5 in this image. The boundaries of the search are spherical with an adjustable
radius.

The concept of kd-trees is proposed in (Friedman et al. 1977) and extended in (Silpa-
Anan & Hartley 2008), where multiple randomized kd-trees are created. kd stands
for k dimensions and such trees organize points in a k -dimensional space. Instead of
splitting the data in half at each level of the tree along the dimension with greatest
data variance, the split dimension is chosen randomly from the first d dimensions with
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greatest data variance. An example of a kd-tree and the nearest neighbor search within
such a structure is shown in Figure 3.12.

Figure 3.13: Visualization of hierarchical k-means trees of 100000 data points with
different branching factors. Gray values indicate the distance between the nearest and
second nearest center (Muja & Lowe 2009).

A hierarchical k-means tree is generated by splitting the data set into distinct regions
using k-means clustering recursively. The data points are partitioned by choosing an
initialization set and performing clustering recursively. The partitioning is done by
selecting the data point which is nearest to the center of a cell and separating these
centers from others with hyper planes that are bisecting the direct connection of the
centers. In a 2D space this leads to a Voronoi-like decomposition. Then, new center
points of all points within the new cluster are determined and the process continues
until the number of points in a region is smaller than k. The result of such a tree is
shown in Figure 3.13.
When the dataset is provided to the FLANN library, a cross-validation approach is
used to determine the best algorithm and optimal parameters. The performance of
the algorithms depends on the data structure, the desired search precision and also
the parameters of the algorithm, e.g. the number of trees to use. Choice of the best
algorithm is then an optimization problem in the parameter space trying to minimize a
cost function including search time, tree build time, and memory usage. This problem
can be computed only on a fraction of the dataset and the solution stays the same for
similar datasets (Muja & Lowe 2009).
As mentioned in Section 3.2.4, we use one row of the descriptor as the input dataset
which corresponds to one time step. With this dataset, we perform a radius search to
find all nearest neighbors in all training samples. The indices and distances of these
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nearest neighbors are returned by FLANN and all neighbors, whose distance is over a
threshold, are disregarded. Given an input sequence at time step 100 and a codebook
entry of the action walk which describes 80 time steps for example, the nearest neighbor
search may return the index 50 with distance 5 among other indices. If this distance
is below the threshold, the result indicates that the walk action ends in 80 − 50 = 30
frames. Therefore we vote for the end of the walk action at frame 100 + 30 = 130.
Within these voting results, we can search for maxima. These maxima indicate that
an action is completed at this point. Such a search can be performed with Mean Shift
maxima search, which is described in the following section.

3.2.6 Mean Shift Mode Seeking

Mean Shift is an iterative procedure which is used to determine the modes of a sample
density function. By identifying dense regions in the feature space the maxima of
this probability density are found. This also allows the identification of clusters by
identifying the nearby maximum (Cheng 1995).
For every data point of the input values Mean Shift calculates the mean within a
window around the data point and shifts the center of the window in the direction
of the mean. This is repeated until convergence and the window is shifted towards a
denser of the dataset. The size of this window also influences the size of clusters which
Mean Shift will find. Examples of window center trajectories are shown in Figure 3.14.

K(x) =

{
1, if ‖x‖ ≤ λ

0, if‖x‖ > λ
(3.25)

K(x) = e−
x2

2σ2 (3.26)

A very important part is the selection of the window type. Such a weighted window is
also called a kernel and can be a simple flat kernel as shown in Equation (3.25) or the
often used Gaussian kernel (3.26). The Mean Shift is then calculated as follows where
S is the dataset.

m(x) =

∑
s∈SK(s− x)s∑
s∈SK(s− x)

− x (3.27)

The density estimation window is moved by m(x) and the repeated application of this
movement is called Mean Shift. Mean Shift is also called“a very intuitive estimate of the
gradient of the data density” (Cheng 1995) and therefore applicable to optimization
problems like finding local maxima. The movement is cancelled when the criterion
mi(x)−mi−1(x) < ε is reached.
A visualization of such an optimization is shown in Figure 3.15, where two maxima are
found by Mean Shift. The Mean Shift optimization is comparable to genetic algorithms
for such purposes (Cheng 1995).
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Figure 3.14: Mean Shift trajectories for different kernels and different procedures, each
trajectory shows the process of shifting the window towards the local mode (Cheng
1995). (a) is the input dataset and b) - f) are the results with varying cluster size and
number of iterations. In (c) and (d) truncated Gaussian kernels were used and in (e)
and (f) non-truncated Gaussian kernels were chosen.

Applications of Mean Shift Searches in Computer Vision were introduced by Comaniciu
in (Comaniciu & Meer 2002). They used Mean Shift on a pixel base and in each
iteration, the density window is shifted towards the center of their neighborhood. The
result is an image separated in homogeneous regions as showed in Figure 3.16. Such
regions can be separated straight forward.

In this work, the result of performing a Mean Shift mode seeking on the voting results
are maxima where ends of actions are estimated. For the final step, which is the
statement of what the subject is doing at the moment, we look at the density of the
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Figure 3.15: Iterations of the Mean Shift procedure to find global maxima. a) shows
the function and b) - e) are the four iterations. The bars are the shifted data points
from a) and the curve in b) - e) is a function whose local maxima approximate the
maxima of the original function. In e) the two maxima are found (Cheng 1995).

Mean Shift result and separate the strongest maxima from weaker ones with a threshold.
This operation is described in the next section.

3.2.7 Determination of Actions from Mean Shift Mode Seek-
ing

The final step is the statement of the type of action which was recognized. For this
purpose, we search for maxima in the density of the Mean Shift result which are over
a threshold for every frame. The threshold is dependent on the number of training
samples because this number influences the total number of votes and therefore the
height of the maxima. In this work, the total number of training samples for a label
is multiplied with a constant factor to get such a threshold. This constant factor is
evaluated in Chapter 5. It is also noticeable, that we only look for maxima which lie in
the future from our actual point of view because our votes are only pointing to future
time points.
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Figure 3.16: Example of an application of Mean Shift in Computer Vision. As a result,
homogeneous regions are found within an image and these regions can be segmented
very easy (Comaniciu & Meer 2002).

The result of comparing to a threshold is a simple true or false statement for each
time step where true means that the action was recognized.
The value of this threshold is set for each label and directly dependent of the number
of entries nSampleslabel for each label in the training sample. Due to the fact, that the
total number of votes nV otes(label) for one label in each time step is

nV oteslabel ≤ nSampleslabel (3.28)

nV oteslabel is equal or below the number of samples because only nearest neighbors
found by FLANN whose distance is below the threshold result in a vote (see Section
3.2.5).

tlabel = nV oteslabel ∗ z (3.29)

The threshold tlabel is defined as the product of nV oteslabel with a constant factor z in
Equation (3.29) and evaluated later.

3.3 Summary

In this chapter the theoretical background of the action recognition framework is presen-
ted. In the first parts, a human body model was introduced and methods for calculating
angles between limbs of this model are described. Also, normalization techniques are
explained to achieve view independence. These steps are also visualized in Figure 4.1.
An action recognition framework based on the Implicit Shape Model was also described.
As it can be seen in Figure 4.3, this includes all steps from nearest neighbor search on
action descriptors, voting and the maxima search with Mean Shift to get a final action
statement.
In the next Chapter, the implementation of the proposed action recognition framework
is described.



Chapter 4

Implementation

In this chapter, the main steps of the implementation of the ISM based action recog-
nition framework are described. Also, possibilites to speed up the implemenation are
presented.

4.1 The Action Recognition Framework

The action recognition framework is divided into the training phase and the recognition
phase. The training has to be performed in advance and is explained in the following
section.

4.1.1 Training Phase

For the action recognition framework, first the training sequences have to be encoded
to get a dictionary. In this dictionary, a variable number of descriptors from training
sequences are stored together with a label for the action they represent. The dictionary
is generated manually by selecting the start and end of the training sequence out of a
file from the CMU Motion Capture database.

3D input data
Transformation

Human body model

Normalization

Angle calculation

Derivation of angles
Action descriptor

Figure 4.1: The processing pipeline for transferring 3D data to our human body model
and the action descriptor.

In Figure 4.2, the tool for generating a dictionary entry is shown. First, the start and
end frame of the action sequence are defined with the two sliders. Then a descriptor
for this range has to be generated and then this descriptor can be added to an existing

43
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Figure 4.2: The tools for generating a dictionary entry.

dictionary or a new dictionary with a label like ‘WALK’. The processing pipeline for
the generation of one training sample for the dictionary is shown in Figure 4.1 and
explained in detail in the following enumeration:

1. 3D input data (c3d file) → Human body model

• The 41 3D marker positions for every time step are read from the c3d file and
converted to the 15 joints of the human body model (see Section 3.1.2.2).

• The human body model is normalized with an affine transformation to the
same orientation and size. This is performed to achieve view invariance (see
Section 3.1.2.3).

2. Human body model → Action descriptor

• First, the absolute and then relative angles of the 12 limbs of the normalized
human body model are calculated. We use a polar coordinate system and
the three angles (latitute, longitude and elevation) for each limb. The results
are continuous angular values over time which can be derivated (see Section
3.1.2.4).

• Derivations of the angular values are concatenated with the hip position and
the relative angle values into an action descriptor for each time step. This
results in a vector with 117 elements (see Section 3.2.3).

• Each vector is written line by line into the action descriptor which has the
form of a matrix with 117 columns and one row for every time step.

3. Action descriptor → Dictionary

• The action descriptor is stored together with a label into the dictionary. The
final dictionary contains several labelled descriptors of different actions.

4.1.2 Recognition Phase

Having a dictionary we can start the action recognition process. The input sequences
are also c3d files from the CMU Motion Capture database. The processing of the input
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Input sequence

FLANN Search

Nearest neighbors

Vote for end of action
Voting spaceaction descriptor

Mean Shift search

MaximaAction Statement
Thresholding

Figure 4.3: The processing pipeline for the action recognition framework.

file is time step based. A descriptor for every time step is generated in the same way
as during the generation of a dictionary. Then the descriptor is processed as shown in
Figure 4.3. In the following enumeration a more detailed description is given:

1. c3d input file → Action descriptor

• For each time step of the input sequence an action descriptor matrix with
dimensions R1×117 is build the same way as in the generation of the diction-
ary.

2. Action descriptor → Association between input sequence and training sample

• To find the association between the descriptor of the input data and a
training sample, a radius search is performed. This search is performed
by the Fast Library for Approximate Nearest Neighbors (FLANN). The res-
ult is a list of nearest neighbors between the input descriptor and training
samples together with distances. One example result could be Index =
30, Distance = 8; Index = 31, Distance = 9; for the search in a walk ac-
tion training sequence with a length of 70 time steps (see Sections 3.2.4 and
3.2.5).

• All results whose distance is below a defined threshold are valid and pro-
cessed as a vote. The threshold defines the radial boundary of a prototype
classifier.

• Each valid result of the FLANN search is taken as a correspondence between
the time step of the input file and the training sample.

3. Nearest neighbors → Voting space

• Each activated dictionary entry indicates the position of the current input
action in the training sequence. Therefore the estimated end of the action
represented by the training sample in which the nearest neighbor was found
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is predictable. Taking the example from above and being at time step 100
of the input sequence, votes for the end of the action walk are stored at the
indices 100 + (70 − 30) = 140 and 100 + (70 − 31) = 139. From the actual
point in time we only vote for ends of actions in the future.

• The voting space is the 1D time axis. One voting space is required for each
action.

4. Voting space → Action statement

• We are interested in maxima within the voting space. These maxima indi-
cate the most probable end points of actions.

• To find these maxima we use Mean Shift Mode seeking (see Section 3.2.6).

• For the final action statement, all maxima in which are in the future and
exceed a predetermined threshold are taken into account to get the action
statement (see Section 3.2.7).

To optimize the runtime of the implementation, some of these steps can be executed
in parallel. Therefore we used OpenMP, which is described in the next section.

4.2 Steps Towards a Real-time Application

Due to the fact, that both the voting and the Mean Shift loop are done independently
for every codeword, it is possible to run these algorithms in parallel. Tor this purpose,
the Open Multi-Processing (OpenMP) application interface is used. OpenMP can be
used with C,C++ and Fortran programs and allows simple shared-memory parallelism.
Parallelization with OpenMP takes place at loop level. OpenMP therefore has some
directives which can be used to run a parallelized for-loop for example. OpenMP

Master Thread

Parallel Task Parallel Task

...

1

2

3

1

2

3

4

Figure 4.4: The multithreading concept which is used by OpenMP.

implements multithreading by using one master thread which executes instructions
consecutively, see Figure 4.4. This master thread then forks a specified number of slave
threads which execute the task. The command for setting the number of threads is
omp_set_num_threads(int numberOfThreads).
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Another interesting property of OpenMP is that the threads are assigned to processors
regarding usage and machine load (Board 2011).
The declaration of private and shared variables also has to be done in the directive.
Shared variables can be accessed by all threads simultaneously whereas when a variable
is private, each thread uses a local copy. Loop iteration variables are private per default
in OpenMP.
The Mean Shift Mode seeking for example can be parallelized because the calculation
of maxima of each label is independent from other labels. Other parts which were
parallelized are the normalization of the stick figure and the calculation of angles in
each time step.

4.3 Performance

The performance of the action recognition framework depends strongly on two factors:

• The similarity of the input sequence with training samples.

• The number of training samples in the dictionary.

The first factor has an influence especially on the performance of the Mean Shift Mode
seeking. If the input sequence matches training samples, many nearest neighbors are
found and the number of input values for Mean Shift increases. This also increases
the runtime. In an extreme scenario, where all nearest neighbor distances exceed the
threshold and no votes are made, Mean shift Mode seeking is not needed because we
don’t have any maxima.
As the number of votes also depends on the number of training samples in the diction-
ary, a very large dictionary would also result in longer runtimes. If there were three
walk actions instead of one in the dictionary, we receive up to 3 votes instead of only
one per time step.
The overall processing time for one time step in our experiments therefore was between
0.1 and up to 10 seconds with large dictionaries.

4.4 Summary

In this chapter an overview of the action recognition framework is given. This includes
the generation of the dictionary as well as the recognition process. In the next chapter,
the framework is evaluated and several experiments are performed.



Chapter 5

Experiments

In this chapter the evaluation of the developed approach is presented. In the first
part, suitable parameter settings are determined. This includes FLANN and Mean
Shift parameters as well as classifier thresholds and the selection of training sequences.
After a well performing setting has been found, the action recognition approach is
tested for its continuity and robustness.

5.1 Parameter Settings

In the following sections, the influence of different parameters on the action recognition
performance is evaluated. First, the parameters for FLANN are evaluated. These
are the number of trees which should be built and the number of leafs to visit while
performing the radius search. For the Mean Shift mode seeking the window size has
to be defined and results for different window sizes are presented. The aim is to find
parameters which allow a robust discrimination between individual actions. In general,
this is a tradeoff between robustness and

5.1.1 Number of Trees in FLANN Search

One parameter which can be defined during a FLANN Search is the numbers of trees.
The trees which FLANN uses are described in Section 3.2.5. In the example in the
FLANN manual, a default value of 4 is given. Therefore we take this parameter as a
start value and vary it from 1 to 4 with two different dictionaries and then choose the
value which gives the best results.

5.1.1.1 Results for a Walk Action

For this experiment, the input action sequence is trial number 6 from subject 7 in the
CMU Motion Capture database. The entries in the dictionary are presented in the
following table, where one entry is a walk action starting and ending with the left foot
on the ground.
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Subject Trial Start Frame Number End Frame Number

07 07 77 215

07 08 32 180

07 09 15 138

07 10 26 157

07 11 28 136

07 12 13 135

Table 5.1: Dictionary of walk actions used for retrieving suitable values of the number
of FLANN trees to use.

To get comparable results, all other parameters are not changed during the experiment
and set to the following values:

• Number of leafs to visit=8

• Mean Shift window size=1.75

• Threshold for nearest neighbors=10

Figure 5.1 shows the result of the Mean Shift mode seeking for the walk action with
the environment settings as mentioned above. The maximum on the left side of the
figure is lower because the input sequence starts in the middle of a walk action and
therefore we receive fewer votes compared to the 2 full walk actions with high maxima.

5.1.1.2 Results for a Jump Action

For this experiment, the input action sequence is trial number 15 from subject 118 in
the CMU Motion Capture Database. The entries in the dictionary are presented in
the following table, where a jump action starts with the swinging of the arms and ends
with a safe stand.
All parameters are set to the same value as given in Section 5.1.1.1.
Figure 5.2 shows the result of the Mean Shift mode seeking for the jump action using
the dictionary and parameter setting above. In the input sequence the person performs
one jump which has to be recognized here.

5.1.1.3 Recommendation for the Number of Trees to Use

A Value of 3 for the number of trees to use gives good results regarding maxima from
the Figures 5.1 and 5.2. In general, all evaluated parameter settings result in maxima
that are sufficient for action recognition, but with a value of 3 we received the most
promising results.
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Figure 5.1: Sample density for different settings of the parameter KDTreeIndexParams
for a WALK action.

5.1.2 Number of Leafs to Visit when a Nearest Neighbor is
Searched with FLANN

One parameter of the knnSearch() function in FLANN is SearchParams. It can be set
with the help of the SearchParams() function and the value in the FLANN example
is 128. Higher values of this parameter would increase the precision but also the time
for performing the radius search is increased. Therefore we vary the parameter from 1
to 256 and compare the results.
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Subject Trial Start Frame Number End Frame Number

118 6 55 280

118 7 195 435

118 8 186 417

118 10 90 287

118 11 150 438

118 12 232 454

Table 5.2: Dictionary of jump actions used for retrieving suitable values of the Number
of FLANN trees to use.

5.1.2.1 Results for a Walk Action

The input sequence and dictionary are the same as in Section 5.1.1.1. Figure 5.3 shows
the result of the Mean Shift mode seeking for different numbers of leafs to visit. For
other parameters, the following values were used:
To get comparable results, all other parameters are set to the following values:

• Number of trees to use=3

• Mean Shift window size=1.75

• Threshold for nearest neighbors=10

5.1.2.2 Results for a Jump Action

For this experiment, the same parameter settings for the input sequence and dictionary
as described in Section 5.1.1.2 are used. The parameter settings are equal to those in
Section 5.1.2.1. Figure 5.4 also shows the sample density.

5.1.2.3 Recommendation for the Number of Leafs to Visit

For later experiments a value of 8 leafs to visit while searching for nearest neighbor
is used. As Figures 5.3 and 5.4 suggest, the parameter has influence on the result,
especially the height of the maxima. It is also noticeable, that the influence on the
height of maxima by different settings for this parameter is bigger than the influence
of different number of trees to use. During a jump action, a parameter setting of 8
gives the highest maximum and for the walk action the maxima are very good too.
The variance of the maxima depends on the action. This can be seen by regarding the
result for 2 leafs to visit. In the walk action the results are smooth while during the
jump action many small maxima occur. Therefore the setting for the number of leafs
to visit was chosen by regarding the height of the maxima.
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Figure 5.2: Sample density for different settings of the parameter KDTreeIndexParams
for a JUMP action.

5.1.3 Threshold for FLANN Results

The nearest neighbor search with FLANN returns two values. One is the index of the
nearest neighbor and the second one is the distance to this neighbor. When using kd-
trees which is true in our case, this distance is the squared Euclidean distance between
two vectors. To find a good value for this threshold, we compared the distances of
actions which meet the action in the dictionary and others who are completely different.
The dictionary for this experiment holds one action, namely a WALK action from frame
77 to 215 out of Trial 7 from Subject 7 in the CMU Motion Capture database. The
parameter settings are described in the following enumeration.

• Number of Trees to use=3
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Figure 5.3: Sample density for different settings of the parameter SearchParams for a
WALK action.

• Number of Leafs to visit=8

• Mean Shift window size=1.75

In Figure 5.5 the distances of four input sequences are drawn as dots. Two of these
actions were walk actions with green (subject 2, trial 1) and black (subject 7, trial 6)
dots and very low distances because of the walk action in the dictionary. For finding a
good threshold, we have taken two samples with completely different actions. These are
a jump action (red color, subject 128, trial 7) and a wave action (green color, subject
141, trial 16). The horizontal lines in the corresponding colors represent the mean of
the distances for each action.
As a consequence of these results, we have set the threshold value to 10. The grey line
in Figure 5.5 indicates that most of the distances from a walk action are below this
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Figure 5.4: Sample density for different settings of the parameter SearchParams for a
JUMP action.

threshold and the ones from different actions are over it, which is the desired outcome.

5.1.4 Approximative versus Exact FLANN Results

The FLANN library also provides the option to search for exact nearest neighbors
instead of using approximative algorithms. To compare the results, we use the following
dictionary and parameter settings and run the action recognition process for both
approximative and exact nearest neighbor results and compare the indices of the found
nearest neighbors. The input file is Trial 6 from Subject 7 from the CMU Motion
Capture database where 3 walking steps are performed.
To get comparable results, all other parameters are fixed during the experiment and
set to the following values:
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Figure 5.5: Distance of nearest neighbors with a walk action as training sequence and
several input actions.

• Number of leafs to visit=8

• Number of trees to use=3

In Figure 5.6 the sample density based on both approximative and exact nearest neigh-
bor search are compared. It can be seen, that the results are different but both methods
generate characteristic maxima for the three walking actions. In this particular scen-
ario, the approximative nearest neighbor search is even better than the exact one when
regarding the last maxima. The measured speed up by using approximative nearest
neighbor searches is in our case around 10 %.

5.1.5 Mean Shift Window Size

For the Mean Shift mode seeking a window size has to be set. This windows size
influences the maximum which is found. If it is very big, only one global maximum is
found and if it is very small, many local maxima are detected. Therefore we have varied



56

Subject Trial Start Frame Number End Frame Number

07 07 77 215

07 08 32 180

07 09 15 138

07 10 26 157

07 11 28 136

07 12 13 135

Table 5.3: Dictionary of walk actions used for comparing approximative and exact
FLANN results

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

S
am

p
le

D
en

si
ty

Frame Number

Comparison of FLANN results for approximative and exact nearest neighbor search

Approximative nearest neighbor search
Exact nearest neighbor search

Figure 5.6: Sample density calculated with results of FLANN with an exact nearest
neighbor search and an approximative nearest neighbor search.

the windows size from 0.1 to 5 to find a value which leads to good results regarding
the sample density.

5.1.5.1 Results for a Walk Action

Figure 5.7 shows the result of the Mean Shift mode seeking for different window sizes.
For this purpose we have used the same training samples for walk as in Section 5.1.1.1.
The other parameters were set to the following values:
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Figure 5.7: Sample density for different settings of the Mean Shift window size for a
WALK action.

• Number of trees to use=3

• Number of leafs to visit=8

• Threshold for nearest neighbors=10

5.1.5.2 Results for a Jump Action

For this experiment, the same environment settings for the input sequence and diction-
ary as described in Section 5.1.1.2 are used. The parameter settings are equal to those
in Section 5.1.5.1. Figure 5.8 also shows the result of the Mean Shift mode seeking.

5.1.5.3 Recommendation for the Mean Shift window size

One result of the comparison of the sample Density for different window sizes is, that
a small window size of 0.1 leads to lower maxima which is not desired. In Figure 5.7
the result for a window size of 2.5 has the highest maxima and in Figure 5.8 it has the
second highest maxima. A value of 2.5 for the Mean Shift Window size is therefore
recommended. One side effect of a smaller window size is that Mean Shift converges
faster because less iterations are needed.
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Figure 5.8: Sample density for different settings of the Mean Shift Window size for a
JUMP action.

5.1.6 Threshold for Getting the Action Statement

For determining a threshold to select maxima which are sufficient to get an action
statement, a value of 20 for the constant factor z (see Equation (3.29)) leads to good
recognition results. It can be chosen this way because the maxima are very charac-
teristic for actions as can be seen in Figure 5.9 and 5.10. With this value, also false
detections are prevented because weaker maxima are disregarded. This can be seen in
later experiments. In both scenarios six training samples were used and therefore the
action statement threshold would be 120 and correct statements can be made.

The final action statements with a threshold as described above are shown in Figure
5.11(a) and 5.11(b).

5.2 Dictionary with Different Actions

In this experiment the action recognition approach is tested with a dictionary of four
different actions (walk, run, jump and sit down). The results of the framework for input
data which also includes all of the mentioned actions are compared and evaluated.

The images in Table 5.5 show, that walk actions are recognized very well. The gaps
between the statements for walk correspond with the number of steps the subject
performs and are due to the fact that the maxima increase with time. If one maximum
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Subject Trial Start Frame Number End Frame Number Action label

118 6 55 280 jump

118 7 195 435 jump

118 8 186 417 jump

127 9 2 77 run

127 10 4 71 run

127 11 0 72 run

7 7 77 215 walk

7 8 32 180 walk

7 10 15 138 walk

86 9 986 1318 sit

114 5 1841 2170 sit

14 27 3177 3528 sit

Table 5.4: Dictionary of 4 actions which is used to compare results for different input
actions.

is detected, the next one is below the action threshold for a time period. To avoid
such alternating action statements, it is possible to hold the action statements a short
period even if no maximum is above the threshold.

Other results like the one for the input from subject 118, file 29 of the CMU Motion
Capture Database show that not all actions can be separated well from other actions
which are in the training sample. This is caused by natural similarities of jump and
sit actions for example. But the action statement for jump is still the strongest one
because the maxima of the sample density for jump are three to four times higher than
the one from sit and run. With a ‘winner takes all’ strategy for the action statement
only the correct statement would be made.

5.3 Influence of Body Parts

In this experiment the influence of regarding the movement only of specified limbs and
body parts is shown. To recognize run actions, we only incorporated the angular data
from the feet into the descriptor because with values from all limbs action recognition
fails. In Table 5.6 the results from both variants of the descriptor are compared.

The difference is caused by the various movements of the arms and upper body which
is too different between the sample action sequences. This results in nearest neighbors
which are disregarded due to their high distance to training samples. At the end of the
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Input Statement Statement Statement Statement

for walk for jump for run for sit

Subject 2

File 1

walk

3 steps

0

1

100 300

0

1

100 300

0

1

100 300

0

1

100 300

Subject 7

File 1

walk

3 steps

0

1

100 300

0

1

100 300

0

1

100 300

0

1

100 300

Subject 75

File 17

sit

0

1

100 300

0

1

100 300

0

1

100 300

0

1

100 300

Subject 118

File 29

jump

0

1

100 300

0

1

100 300

0

1

100 300

0

1

100 300

Table 5.5: Action Statements for various input files. The dictionary contains three
samples of each action listed above. The first and second row contain the action
statements for two jump actions with three steps in the input file. The third input
action contains one sit action and the fourth one jump. Of course, the input actions
are different from the learned samples.

input sequence for run also walk actions were detected. But as for the jump actions in
Section 5.2, the maxima of the run actions value is 1.5× higher than the one from the
walk action.
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Input Statement Statement Statement Statement

for walk for jump for run for sit

Subject 127

File 7

run

only feet

0

1

50 100

0

1

50 100

0

1

50 100

0

1

50 100

Subject 127

File 7

run

0

1

50 100

0

1

50 100

0

1

50 100

0

1

50 100

Table 5.6: In the first row action statements for a run action where only values from
the feet are in the descriptor are shown. The second row contains the action statements
of the complete descriptor and it can be seen, that no statements were made if angles
from all limbs are included.

5.4 Influence of the Derivations of Relative Angles

in the Descriptor

In this experiment the influence of including the first and second derivation into the
descriptor is shown. In this experiment the same dictionary as in Section 5.2 was used.
The input file was file 1 from subject 7.

The result in Figure 5.12 shows that the maxima are influenced by the first and second
derivatives. The best result is achieved if all derivatives are included in the descriptor.
The influence of the first derivatives is higher than the second derivative. This is caused
by the relative small numbers in the second derivative.

If no derivatives were included, also false positive action statements for run and jump
actions were made. This can also be seen in Figure 5.13. The input sequence only
contains walk actions and therefore, no recognitions for other actions should be made.
With only relative angles in the descriptor, there were also maxima which lead to pos-
itive action statements for jump, run and sit which can be seen in the Figures 5.13(a),
5.13(b) and 5.13(c). This indicates that the derivatives of relative angles, especially
the first derivative, are important and they are needed in the action descriptor.
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5.5 Robustness

To test the robustness of the action recognition framework we use the same training sets
and input data as in Section 5.2. The input data is corrupted with normally distributed
additive noise with zero mean and different standard deviations. Because the values
in the descriptor are expressed in radians, we can interpret a standard deviation of
σ = 0.1 as 5.7 degrees for the relative angles for example. The results are compared to
those from undisturbed data and the standard deviation is incresaed until recognition
fails.

5.5.1 Results for a Walk Action

For this experiment we have taken file 1 from subject 7 as the input file. The results
of the action statements for the original data are shown in Table 5.5.
In Figure 5.14(a) and Figure 5.14(b), the different results of the action statement and
sample density for walk are shown. With a noise of σ = 0.1 (≈ 5.7◦) the results are
very similar to those from the original data. With σ = 0.2 (≈ 11.5◦) and σ = 0.25
(≈ 14.3◦), fewer and fewer action statements were made and also the height of the
maxima decreases. Also there were no false classifications for other actions than walk
in the action statements at all noise levels up to σ = 0.25. At a noise level of σ = 0.3
(≈ 17.2◦) there were no recognitions at all.

5.5.2 Results for a Jump Action

The recognition results for the jump action in Section 5.2 showed beside the correct
recognition of sit also a short recognition of sit and run. Therefore we have also
evaluated the influence of noise on such results. The results can be seen in the Figures
5.15(a) and 5.15(b). In this case with the results are comparable to those from Section
5.5.1. With increasing noise, the recognitions are getting shorter and shorter until a
noise of σ = 0.3 where no recognitions were made.

5.6 Summary

In the last sections, the action recognition framework was evaluated. Several para-
meters were determined to get satisfying results. It was shown, that the framework
is able to detect actions like walk in input sequences. Also the robustness against a
certain level of noise was evaluated. Special cases like running actions, were the action
descriptor needs to be adjusted, were also considered. The next Chapter sums the work
up and gives an outlook for possible future work.
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Figure 5.9: The Figures 5.9(a) to 5.9(h) are showing the sample density over time from
a walk action (subject 7, trial 6) and the evolution of maxima. Here, only the part
which is taken into account for detecting maxima above the threshold is shown (see
Section 3.2.7). In this example, the subject performs three steps and therefore three
maxima at frame 170, 310 and 440 where the walk action is finished are noticeable.
The dictionary contained six walk actions and the action threshold would be 120 in
this case.
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Figure 5.10: The Figures 5.10(a) to 5.10(e) are showing the sample density over time
from a jump action (subject 118, trial 15) and the evolution of maxima. In this example,
the subject performs one jump and therefore one maximum at frame 450 where the
jump action ends is noticeable. The dictionary contained three jump actions and the
action threshold would be 60 in this case.
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Figure 5.11: (a) shows the action Statement generated out of the results from frame 0
to 200 as shown in Figure 5.9. (b) shows the action Statement from the sample density
as shown in Figure 5.10. In these Figures, also the Sample density is plotted to show
the correspondence between action statement and Sample density.
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Figure 5.12: Sample density for walk with different descriptor variants. Because the
input sequence is a walk action, higher maxima are better in this case.
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Figure 5.13: (a): Sample density for jump. Lower values are better because the input
sequence only contains walk actions. (b): The sample density for run, also lower values
are better. (c): Mean Shift result for sit.
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Figure 5.14: (a): Comparison of the action statements with different noise levels. (b):
Comparison of the sample density with different noise levels.
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Figure 5.15: (a): Comparison of the action statements for the sit action with different
noise levels. (b): Comparison of the action statements for the jump action with different
noise levels.



Chapter 6

Conclusion

6.1 Summary and Results

In this thesis, an action recognition framework was described and evaluated. This
framework consists of several parts which are the transformation of human poses as 3D
input data into a human body model and the action recognition process based on the
Implicit Shape Model.

In Chapter 2 an overview of the existing approaches was given. This includes the
temporal and spatial action representations as well as the segmentation of actions.
Also, methods to achieve view invariance are described.

This chapter is followed by Chapter 3 where the basics of the action recognition frame-
work were presented. These are the human body model including the necessary steps
for transforming 3D input data to the model and calculating angular values of the
limbs. Based on these angular values, the Implicit Shape Model -based action recog-
nition process was introduced in detail. This covers the descriptor for representing
actions, the codebook and the voting process, the Mean Shift mode seeking and the
generation of the final action statements. Details of the implementation of these steps
were given in Chapter 4.

Subsequent to the basics and implementation, the approach was evaluated with several
experiments. With a suitable parameter setting, basic action recognition was possible
and very promising results for walking and jumping actions were received. Several
illustrations of the Mean Shift mode seeking results and the consequential action state-
ments were given. Also, the robustness and performance of the approach for separating
between different actions and dealing with noisy data was investigated. During this
phase, we also discovered that recognizing running actions works only if parts of the
body are regarded due to the various ways of arm movements in the available train-
ing sequences. Also, the similarities of actions like jump and sit down are mentioned
because they result in recognitions of both actions.
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6.2 Future Work

The only source of 3D input data for action recognition in this work is the CMU Motion
Capture database. Though this database provides a variety of actions, more data to
test and evaluate the approach with different actions might be resulting in further
improvements. For example, the framework can be tested with 3D poses provided by
recording techniques as Microsoft Kinect. Other possible input data may come from
3D pose estimations out of 2D poses in real videos which was done in (Brauer & Arens
2011).
The action recognition approach is not yet implemented efficient enough to perform
in real time. Up to now, the runtime depends heavily on the number of votes and
the resulting Mean Shift iterations. The question is if it will perform in a real time
mode on recent hardware or if we have to wait for faster devices. As the number
of available CPU is increasing steadily and the implementation has still optimization
potential more efforts can be taken into this direction.
Another idea is to consolidate several training samples into one by fitting them to the
same length and calculating the mean for example and evaluate the performance of
these training samples. This would also resolve the problem of temporal invariances
in the training samples but then the input sequences can still be in different temporal
scales.
The training samples may also be clustered which would also reduce the amount of votes
and therefore improves the performance. The question is if the approach performs well
with a lower amount of votes.
Also, the descriptor may be altered by using other values than the different ones to
determine the strength of angular data for action recognition. The fact that running
actions are only recognizable when the upper part of the body is disregarded (see
Experiment 5.2) suggests, that using different descriptors may lead to better recognition
results.
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3.8 This figure shows the calculated absolute and relative angle values of
φ over time of the left and right foot from a walk action (Subject 139,
Trial 30) of the CMU Motion Capture database (a): Left foot relative
angle φ. (b): Right foot relative angle φ. (c): Left foot absolute angle
φ. (d): Right foot absolute angle φ. . . . . . . . . . . . . . . . . . . . . 33



74
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Appendix A

Graphs

In the following figures depict the GUI of the implementation. This includes the visual-
ization of 3D Input Data, the calculated angles and also the generation of the dictionary
as well as the options to start the recognition process. Also the visualization of the
results from the voting and the action statements are shown.

83



84

Figure A.1: The visualization of 3D input data.
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Figure A.2: The visualization of the relative angles and their derivations.
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Figure A.3: The management of the dictionary (upper part) and the starting of the
action recognition process allowing the definition of the values which should be included
(lower part).
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Figure A.4: The visualization of the distribution of the votes.
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Figure A.5: The visualization of the action statements.



Appendix B

Libraries

For the avoidance of re-implementing already existing procedures and also performance
issues, several libraries are used in the implementation. The graphical user interface
(GUI) is realized with Qt, for matrix and image operations the OpenCV library is used.
The rendering of 3D data is done with OpenGL, and as mentioned in Section 3.2.5,
the FLANN library is utilized for performing approximative nearest neighbor searches.
Details of these libraries are proposed in the following sections.

B.1 Qt

Qt, which is pronounced ‘cute’ is a very popular platform independent framework for
developing all kind of applications. The variety reaches from simple command-line
tools to extended GUI Applications. The programming language is C++.

Qt was developed by the Norwegian company Trolltech and released 1995 as Qtopia.
In 1997 Qt was used to build the KDE Desktop for Linux and was widely used for
developing GUI Applications on Linux systems (Blanchette & Summerfield 2006). Since
2001 and version 3.0 Qt is also available for Windows and MAC platforms. In 2008
Nokia bought the Trolltech company.

The main advantages of Qt are a very simple and intuitive GUI design which can be
done either with the built-in designer tool shown in Figure B.1 or in the code itself.
Other useful tools are built-in features for XML editing, SQL database access, thread
management and much more. Qt is licensed under the GNU Lesser General Public
License and the usage is free. Popular applications which use Qt are Skype, Google
Earth and the VLC Media Player.

The GUI of the implementation of the ISM based action recognition framework is
shown in Chapter A. In the left third, the 3D Renderer for human poses can be seen.
In the middle, the results from the conversions to relative angles are shown and the
right third is for managing the dictionary and starting the recognition process.
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Figure B.1: The Qt Designer for creating interactive GUIs.

B.2 OpenCV

Open Source Computer Vision (OpenCV) is a widely used library for image and video
analysis. It contains several hundred algorithms for such purposes and was introduced
by Intel in 1999. Today it is supported from Willow Garage1, a robotics research lab
(Laganière 2011).
First versions were implemented in C but since version 2, it supports C++ as a pro-
gramming language. The application areas of OpenCV cover a wide range from simple
image loading and visualization as shown in Figure B.2 and manipulation over face
recognition to advanced tracking technologies and even statistical learning methods.
OpenCV is split in several modules from which the most important ones are described
in the next enumeration:

• core module, which provides basic data structures as matrix operations.

• imgproc module for image processing including filtering, color conversions build-
ing histograms and much more.

• video module with algorithms for tracking and motion estimation for example.

• calib3d is a module for use with multi camera systems including methods for
pose estimation and 3D reconstruction.

1http://opencv.willowgarage.com/

http://opencv.willowgarage.com/
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Figure B.2: Example of the visualization of an OpenCV matrix with the imshow()

function. The matrix in this image is a descriptor as mentioned in Section 3.2.3.

• features2d module provides feature descriptors like SIFT, SURF among many
others.

• objdetect module allows the detection of predefined objects like faces, eyes and
cars.

• highgui provides an interface for capturing of video and image data.

• gpu includes several algorithms which are optimized for GPU devices.

In our implementation, OpenCV is used at many different points like displaying images
of results and matrix operations with the Mat structures provided by OpenCV. For
example, the descriptor matrix as described in Section 3.2.3 is implemented as an
OpenCV matrix. OpenCV also allows easy storing and loading of matrices and XML
files on the hard disk with the FileStorage interface.

B.3 OpenGL for Rendering of 3D Poses

The Open Graphics Library (OpenGL) is a software which provides an interface to a
graphic card for displaying images or 3D object. It was developed by Silicon Graphics
(SGI) in the early 1990s and since 2006, The Khronos Group Inc.2 has control of the
OpenGL specification.
OpenGL defines a cross-language and cross-platform programming interface which
provides several hundred functions like drawing points, lines or polygons for the cre-
ation of complex scenes (Segal & Frazier 2010). These basic primitives are converted

2http://www.khronos.org/

http://www.khronos.org/
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Vertex Shading
and Per-Vertex
Operations

Vertex Data Primitive As-
sembly and
Rasterization

Fragment
Shading and
Per-Fragment
Operations

Framebuffer

Transform feed-
back

Texture Mem-
ory

Pixel operationsPixel Data

Figure B.3: The OpenGL State Machine. Commands enter on the left and are pro-
cessed through the pipeline.

to pixels by passing a state machine called GL State Machine which is shown in Figure
B.3.

In the first stage, vertex data as points or polygons are processed to geometrical prim-
itives who can be processed by the following stage to other primitives. Then the data
is rasterized into fragments and converted into pixels. On these fragments, operations
like color blending can be performed before the last step follows, which is the insertion
of fragments into the frame buffer. Elements in the frame buffer are then displayable
on a screen. An example of the rendering of 3D poses is shown in Figure 3.7.

B.4 Fast Library for Approximate Nearest Neigh-

bors

The Fast Library for Approximate Nearest Neighbors (FLANN) was already described
in Section 3.2.5. The library was developed by Marius Muja and David G. Lowe and
released as open-source software under the BSD License3.

FLANN is written in C++ but also has bindings to C, Matlab, and Python. Com-
pared to the brute-force technique of searching the nearest neighbor, the approximative
approach of FLANN is several orders of magnitudes faster (Muja & Lowe 2009).

3http://www.opensource.org/licenses/bsd-license.php

http://www.opensource.org/licenses/bsd-license.php
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To run FLANN, a dataset and a query matrix have to be defined as flann::Matrix.
Then, a randomized tree must be built by using the flann::Index interface and the
buildIndex() function. The knnSearch() function then does the actual nearest neigh-
bor search.



Appendix C

Timetable

Period Work items

01.12.2011-
02.12.2011

Getting familiar with the geometric description of humans. Record
advantages and disadvantages of Ferrers methods.
Aim: formal basics for the correct geometrical description of humans.

05.12.2011-
10.12.2011

Setting up the environment for development and installing all needed
frameworks (Qt, OpenCV, OpenGL).
Familiarization with Qt and conception of a first GUI.
Aim: Working GUI prototype

12.12.2011-
17.12.2011

Realization of an interface and a routine for converting 3D Motion
Capture data from c3d format to C++ STL vectors.
Implementing a routine for transferring 3D Motion Capture Data to
a stick figure model.
Aim: Ability to load .c3d files and converting them to the human
model used in this work.

20.12.2011-
23.12.2011

Display a stick figure with OpenGL in the program.
Retrieve how to calculate relative angles from 3D coordinates includ-
ing affine transformations and normalizations of data.
Aim: Visualizing stick figure and getting correct results for relative
angles of the stick figures limb.

09.01.2012-
13.01.2012

Calculating first and second order derivations of relative angles with
different methods.
Display derivations in the program.
Aim: Finding a sufficient method for derivating relative angles and
ability to display the derivations over time.
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Period Work items

16.01.2012-
21.01.2012

Building a descriptor out of relative angles, first and second order
derivations in a single matrix.
Implementing methods for displaying and saving the descriptor.
Find good data from the MOCAP Database for several actions as
waving, walking and running.
Aim: Ability to generate a descriptor which can be processed and
used in later work.

23.01.2012-
28.01.2012

Reading papers for the related work chapter.
Writing down the fundamentals for the work done till this date.
Aim: Draft for the first chapters of the final thesis.

30.01.2012-
03.02.2012

Implementing the codeword dictionary and methods to create and
edit a dictionary.
Writing Chapter 2.
Aim: Finished Chapter 2 and ability to generate and edit dictionarys.

06.02.2012-
10.02.2012

Implementing nearest neighbor search with FLANN (Fast Library for
Approximate Nearest Neighbors) Muja & Lowe (2009).
Implementing appropriate methods for analyzing displaying the res-
ults of FLANN.
Aim: Completing the workflow from c3d data until the search for
nearest neighbors from descriptors in codewords.

13.02.2012-
17.02.2012

Testing the implementation with several dictionarys and large data
sets.
Implementing specializations of the descriptor to allow comparisons
for specified limbs or datasets.
Aim: Completing the workflow from c3d data to the search for nearest
neighbors from descriptors in codewords.

13.02.2012-
17.02.2012

Improvement and Enhancement of the Gui.
Basics of Mean Shift Search
Aim: Well arranged GUI and understanding of the Mean Shift mode
seeking.

27.02.2012-
03.03.2012

Testing the implementation of the Mean Shift Search with example
data.
Set the development environment to get Mean Shift working.
Aim: Be able to run the MeanShift algorithm with sample data.

05.03.2012-
09.03.2012

Converting FLANN results to a Mean Shift readable format.
Improving the displaying of the FLANN results.
Aim: Correct displaying of FLANN results and first runs of Mean
Shift Search on these results.
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Period Work items

12.03.2012-
16.03.2012

Improving the implementation of Mean Shift search.
Implementing methods for displaying Mean Shift Results.
Reimplementing methods for displaying in separate classes and re-
structuring of code.
Aim: Being available to run Mean Shift search and visualize the res-
ults.

19.03.2012-
23.03.2012

Testing the application and removing bugs.
Generation of a complete training data set for five actions.
Aim: Correct implementation and appropriate training sets.

26.03.2012-
30.03.2012

Parallelization of the voting process and the Mean Shift Search.
Create visualizations of the Mean Shift Search in MatLab.
Aim: Being able to calculate Mean Shift results faster with larger
dictionarys.

09.04.2012-
13.04.2012

Finishing of Chapter 2.
Writing Chapter 3.
Aim: Finished Chapter 2.

09.04.2012-
13.04.2012

Preparing and first Experiments.
Finishing Chapter 3.
Aim: Outline and first results for Chapter 5.

16.04.2012-
20.04.2012

Code review to check for bugs and small errors.
Writing Chapter 4.
Aim: Stable implementation and complete Chapter 4.

16.04.2012-
20.04.2012

Generating graphs of the results for these experiments.
Writing Chapter ‘Evaluation’.
Aim: Finished the Thesis to Chapter 4 and first parts of Chapter 5.

23.04.2012-
27.04.2012

Performing experiments for parameter settings.
Aim: First experiments for Chapter 5.

30.04.2012-
04.05.2012

Review and correction of Chapters 3-4.
Writing chapter 5.
Aim: First parts of chapter 5.

07.05.2012-
11.05.2012

Corrections and improvements in all Chapters.
Performing experiments for robustness.
Aim: Correct text and more experimental data.

14.05.2012-
18.05.2012

Implementing methods to get noisy input data.
Performing experiments for robustness with noisy input data.
Aim: Tested robustness of the approach.
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Period Work items

21.05.2012-
25.05.2012

Finishing of the thesis.
Aim: Finished all experiments and corrections.


	Introduction
	Problem Definition and Aim of this Thesis
	Thesis Outline

	Related Work
	Temporal and Spatial Action Representations
	Spatial Action Representation
	Temporal Action Representation
	Segmentation
	View Indepence

	Human Sequence Evaluation: the Key-Frame Approach 
	Implicit Shape Model based Action Recognition Methods
	Summary

	Basics of Human Motion Modeling and Action Recognition
	Human Body Model
	Stick Figure Model
	From Motion Capture Data to Relative Angles
	Derivation of Relative Angles with Numerical Methods

	Implicit Shape Model based Action Recognition
	ISM - a Brief Overview
	Adaptions to the ISM
	Building a Descriptor for Action Recognition
	Codebook Entries and Voting
	Approximate Nearest Neighbor Search
	Mean Shift Mode Seeking
	Determination of Actions from Mean Shift Mode Seeking

	Summary

	Implementation
	The Action Recognition Framework
	Training Phase
	Recognition Phase

	Steps Towards a Real-time Application
	Performance
	Summary

	Experiments
	Parameter Settings
	Number of Trees in FLANN Search
	Number of Leafs to Visit when a Nearest Neighbor is Searched with FLANN
	Threshold for FLANN Results
	Approximative versus Exact FLANN Results
	Mean Shift Window Size
	Threshold for Getting the Action Statement

	Dictionary with Different Actions
	Influence of Body Parts
	Influence of the Derivations of Relative Angles in the Descriptor
	Robustness
	Results for a Walk Action
	Results for a Jump Action

	Summary

	Conclusion
	Summary and Results
	Future Work

	List of Figures
	Bibliography
	Graphs
	Libraries
	Qt
	OpenCV
	OpenGL for Rendering of 3D Poses
	Fast Library for Approximate Nearest Neighbors

	Timetable

