

CVSPORTS

FRAUNHOFER INSTITUTE OF OPTRONICS, SYSTEM TECHNOLOGIES AND IMAGE EXPLOITATION

Investigation on Combining 3D Convolution of Image Data and Optical Flow to Generate Temporal Action Proposals

Patrick Schlosser, David Münch, Michael Arens

Motivation

(Images from [1])

- Detection of time segments with 'actions of interest', e.g. all time segments with sporting activities from an untrimmed video.
- Preprocessing step for later classification of actions inside the time segments.

Approach

 C3D [2] and SST [3] network used as a basis for all model architectures.

Evaluation & Results

- Evaluation on THUMOS'14 [4] dataset.
- All two-stream models achieve improvements.
- Improvements still achieved when optical flow is calculated by FlowNet2 [5] instead of Brox [6].

Development of four different two-stream models with 3D convolutions on both streams (images + optical flow):

Average number of proposals tloU	
Network	Score
Original SST network	0.6025
TensorFlow SST network (images)	0.6295
TensorFlow SST network (optical flow)	0.6320
2S-Mid+	0.6497
2S-Midfc	0.6438
2S-LateAvg	0.6495
2S-Latefc	0.6466
2S-LateAvgFN (optical flow by FlowNet2)	0.6436
(Score: average recall at average 1000 proposals)	

Conclusion

- Two-stream approach with 3D convolutions useful for temporal action proposals: all models achieved improvements.
- Improvements not bound to a single

method of calculating optical flow.

References

- [1] A. Gorban, H. Idrees, Y.-G. Jiang, A. R. Zamir, I. Laptev, M. Shah, and R. Sukthankar. THUMOS challenge: Action recognition with a large number of classes. http://www.thumos.info, 2015.
- [2] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. ICCV, 2015.

[3] S. Buch, V. Escorcia, C. Shen, B. Ghanem, and J. C. Niebles. SST: Single-stream temporal action proposals. CVPR, 2017.

- [4] Y.-G. Jiang, J. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar. THUMOS challenge: Action recognition with a large number of classes. http://crcv.ucf.edu/THUMOS14/, 2014.
- [5] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. CVPR, 2017.

[6] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV. Springer, 2004.

Dr.-Ing. David Münch Video Content Analysis Phone +49 7243 992-176 david.muench@iosb.fraunhofer.de