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Abstract
Motivated by the advances in computer vision and machine learning algorithms and
the availability of more powerful computational resources, automatic human action
recognition has emerged as an active research field in the recent years with several
promising applications. Systems capable of extracting relevant information from
human motion in video sequences could be applied in several domains such as video
surveillance, automatic video indexing, analysis of sport events and human computer
interaction. On the basis of a previously implemented framework (Zepf, 2012),
this thesis presents an implementation of an automatic human action recognition
system using a Hough-transform based approach. In this thesis, the recognition
performance of the implementation is assessed for different actions using two different
types of descriptors: joint-angle and geometric descriptors. Additionally, the time
scale invariance and the robustness of the system concerning real data are evaluated.
The results show that the evaluated actions can be classified successfully after a short
time of observation.
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Chapter 1

Introduction

Several video analysis tasks require human operators to monitor a huge amount of
video data containing human motion. Such activities are not only tedious but de-
mand high concentration, require high operational costs and are prone to errors. In
some cases, it is also likely that relevant information is disregarded since the inter-
vals during which motion occurs are rather rare. Consequently, the development of
systems capable of analysing and understanding such video sequences has become
an active research field in computer vision with many possible applications. Typ-
ical examples of applications include video surveillance systems, automatic video
indexing, analysis of sport events and human computer interaction among others.
According to the hierarchy proposed in Moeslund et al., 2006, recognition of human
movements can be divided into action primitives, actions and activities. Action
primitives refer to short movements that can be described at the limb level. Actions
are constructed from several action primitives and represent a whole body movement
whereas activities are sequences of actions that can be given a semantic interpreta-
tion. For example, hand or leg movements are action primitives. Jumping, running,
and dribbling are actions while playing basketball is an activity containing these
actions. Following this definition, the work presented in this thesis is focused on the
recognition of individual actions. This, together with person tracking, is an integral
part for the analysis of more complex interactions between people (Figure 1.1). Al-
though, there are particular demands for each action recognition framework, three
general steps in the implementation process can be identified. In the first place,
the data is acquired by means of a single camera or more specialized 3D sensors.
Secondly, the input data from the sensors is processed in order to extract relevant
information from each frame and represent it in a suitable way: the descriptor. In
the last step, characteristic patterns are found in the representation of data and they
are classified in order to give a hypothesis of the type of action being performed.
The extraction of useful information normally requires advanced image processing
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Figure 1.1: This figure depicts the pursued pipeline from images to semantic scene
descriptors at the VCA group at the Fraunhofer IOSB.

techniques such as person detection and tracking whereas classification demands
state of the art machine learning algorithms. As a result, human motion detection
becomes a challenging and computational intensive task especially when real-time
processing of video data is required.

Early developments in the field were only able to perform action recognition un-
der an ideal environment in which, for example, only one person is present in each
video frame and the background remains unaltered. However, more sophisticated
techniques are needed in applications where cluttered video frames with several peo-
ple, and possibly low video resolution, camera movements and partial occlusions are
present. Previous research has shown that recognition of actions in such circum-
stances is possible with Hough-transform based methods (Yao, Juergen Gall, and
L. V. Gool, 2010), (Yao, Juergen Gall, and L. Gool, 2012). Their ability to integrate
information from different frames into a probabilistic framework makes them robust
to small variations and missing information.

Motivated by the important role that action recognition plays and justified by the
success of previous research, an action recognition framework based on the general-
ized Hough transform is developed in this thesis. In the following, a more detailed
view of the objectives of this work is given.
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1.1 Problem Definition and Aim of this Thesis

Automatically deriving semantic descriptors of an observed scene is a challenging
task. The derivations of statements about actions a person is performing are high-
dimensional and complex. In this work actions should be derived from the 3D pose
of persons over time. It has been shown in previous work (Zepf, 2012), that the gen-
eralized Hough transform can be applied on action recognition. In this work actions
are recognized on real data; on the one hand a depth sensor, the Microsoft Kinect,
is available and on the other hand there are promising results in estimating the 3D
pose of the human body in image sequences, see e.g. (Brauer and Arens, 2011).
Additionally, the person-centric actions are a further step towards fully exhaustive
video content analysis. Building on an existing framework, that has already been
implemented to show the fundamental feasibility of using the generalized Hough
transform for action recognition, an extension for temporal invariance should be de-
veloped and evaluated. Furthermore, the robustness of the action descriptors should
be systematically increased. Subsequently, the framework should be examined for
its applicability in real world scenarios. A real-time implementation is a must.

1.2 Thesis Outline

The thesis is structured as follows: Chapter 2 gives an overview of several recent ap-
proaches previously developed for action recognition. Chapter 3 introduces the main
concepts for representing and classifying human body poses on which the implemen-
tation of this framework is based. Chapter 4 describes the improvements that were
made in this work over the previously developed framework. Specifically, boolean
geometric descriptors are introduced as a new type of human body pose represen-
tation that can improve robustness with respect to other descriptors. Additionally,
the reciprocal nearest neighbour (RNN) procedure for clustering is introduced as a
tool for improving robustness and reducing the computational time. Chapter 5 gives
details over the full implementation of the framework, including the main modules of
the program and specifications of the graphical user interface. Subsequently, Chap-
ter 6 presents the main results obtained for different training and test sequences.
Finally, Chapter 7 contains the summary and gives an outlook for future work.
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Chapter 2

Related Work

The continuous development of more powerful computational devices has made rapid
advance in computer vision possible. Human action recognition is no exception; a
huge number of publications are nowadays available. These works differ mainly
in the methodology used for extracting features and classifying them. Before pro-
ceeding to a more detailed description, this section intends to give a brief overview
of recently developed methods in human action recognition. As mentioned before,
methods for action recognition can be roughly classified according to how the im-
age or video frame is represented and according to how this information is used to
perform a classification. Given the extensive previous research on the topic, only a
brief description of methods representing each category is given.

2.1 Image Representation

The way in which an image, depth image, video frame, or sequence of frames is
represented is the initial step in any human action recognition approach. The cho-
sen representation must be able to generalize over small variations in person ap-
pearance, background, viewpoint and action execution. Simultaneously, it must be
robust enough to allow for accurate classification. Image representation can be cat-
egorized into global representations and local representations. The pattern followed
in global representations requires a top down approach, that is, the person is initially
localized by tracking or background subtraction. Subsequently, the whole localized
person is used as the input descriptor for the classification procedure. On the con-
trary, local representations are characterized by a button-up approach. An image is
described as a collection of individual patches where each patch is normally selected
with help of a spatio-temporal interest point detector. The individual patches are
later assembled to form the image representation. An important advantage of these
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approaches is their robustness to noise and occlusions. In the following subsections,
a few examples of the different methods are given.

2.1.1 Global Representations

As mentioned earlier, this kind of approaches normally require localization of the
person. Once the region of interests (ROI) with the person in the center is found,
different features such as silhouettes, edges or optical flow can be derived and used
for the representation of the body.
An early example of such approaches was developed by (Bobick and Davis, 2001).
They calculate a binary motion energy image (MEI) by aggregating the differences
between silhouettes of consecutive frames, thus obtaining an approximation of where
motion occurs. Similarly, silhouettes are used by (Y. Wang et al., 2007) where an
R Transform is applied in order to achieve scale and translation invariance. In
(L. Wang and Suter, 2006), silhouettes are also used. A representative silhouette is
obtained by averaging the mean intensity among all centred frames, and in addition,
the mean shape is calculated from the centered contour of all frames.
Instead of using a single camera, the approach adopted by (Weinland et al., 2006)
uses silhouettes from multiple views to construct a 3D voxel model. This work is
an extension of the initially proposed approach in (Bobick and Davis, 2001) but ex-
tended to three dimensions. That is, the motion energy images and motion history
images (MHI) are obtained by a set of calibrated cameras. The later, also known
as motion template, represents a volume whose voxels indicate how recent a motion
occurred. Since invariance with respect to position, orientation and size is required,
the motion template is first transformed into cylindrical coordinates and a Fourier
transform over the resulting function is calculated. The invariance results from the
Fourier shift theorem which states that a function f0(x) and its translated counter-
part f0(x− x0) only differ by a phase modulation after the Fourier transformation:

Ft(k) = F0(k)e
−j2πkx0 (2.1)

Consequently, the magnitudes |Ft(k)| are shift invariant. By choosing an appropri-
ate cylindrical coordinate system, rotations around z axis are converted into trans-
lations, thus achieving rotation invariance as well.
When background subtraction is not available, optical flow can alternatively be used.
However, difficulties with this approach may arise as optical flow is also influenced
by camera movements. This can be compensated by tracking the person.
A variation of global representations are grid-based approaches. These approaches
are implemented by dividing the spatio-temporal domain into a grid. This reduces
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Figure 2.1: Space-time shapes for jumping, walking and running actions (Blank et
al., 2005).

difficulties that usually arise due to noise and partial occlusion. Although grid
based methods are somewhat similar to local representations, they still need a global
representation of the ROI. An example of such methods is described in (Kellokumpu
et al., 2008).
3D spatio-temporal volume (STV) also belongs to global representations category.
In this method, different features in each frames are extracted and stacked over
time to form a global function. In (Blank et al., 2005), silhouettes from each frame
are extracted and a volumetric space-time shape is constructed as shown in Figure
2.1. Given this volumetric shape, they compute a new function by assigning, for
every internal point in the silhouette, a value reflecting the mean time required
for a random walk beginning at the point to reach the boundaries. This function
can be represented as a partial differential equation known as the Poisson equation
with the boundary conditions specified by the silhouette contours. By computing
the solution of this function, a wide variety of useful local shape features can be
extracted. In order to obtain global features, weighted moments are calculated over
the local features.

2.1.2 Local Representations

Instead of representing the video frame or group of frames as a whole, local rep-
resentation methods use a collection of local descriptors or patches. They posses
the advantage of being more robust to partial occlusions and changes in viewpoint.
These types of methods can be categorized further into space-time interest point
detectors and local descriptors.
Space-time detectors are operators capable of finding space-time points in a video
sequence where important changes occur. (I. Laptev and Lindeberg, 2003) idealize
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Figure 2.2: Solution of the Poisson equation for space-time shapes. Each space-time
point represents the mean time required for a particle undergoing a random-walk
process starting from the point to hit the boundaries (Blank et al., 2005).

Figure 2.3: Result of Spatio-Temporal point detector for a wave action (I. Laptev
and Lindeberg, 2003).

this approach by extending the Harris corner detector (Harris and Stephens, 1988).
Instead of detecting significant spatial variations in an image, this new approach
takes into account the time dimension. Points with high variations in the spatio-
temporal domain will represent the location and time in a video sequence where
non-constant motion occurred. Figure 2.3 illustrates the results of such a detector
for a waving action.

Local descriptor representations abstract an image or video as a collection of small
2D or 3D windows. This descriptor should ideally be invariant to background clutter,
appearances and occlusions. An example in this category is proposed in (Schuldt
et al., 2004) where space-time interests detectors are also employed. Alternatively,
patches are described by local grid-based descriptors in (Willems et al., 2008). In this
work, a novel spatio-temporal feature detector is employed in which an improvement
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Figure 2.4: Cuboid regions around interest points for walking, boxing and hand
waving actions (Ivan Laptev et al., 2007).

in efficiency is achieved compared to the original detector introduced in (I. Laptev
and Lindeberg, 2003). To describe the encountered points, an extended version of
the SURF (Bay et al., 2008) descriptor is implemented as illustrated in Figure 2.4.
It consists of dividing the volume in the neighborhood of the interest point into a
grid of MxMxN bins. Each bin is filled by a weighted sum of uniformly sampled
responses of the three axis-aligned Haar-wavelets dx, dy, dt.

2.2 Action Classification

Having obtained a representation of an image or video frame, the next step is to
perform classification. This can be done by directly classifying images without ex-
plicitly modeling variations in time as described in Section 2.2.1. Alternatively,
temporal state-space models can be used, this is described in Section 2.2.2.
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2.2.1 Direct Classification

Classifiers of this type typically compile an entire video sequence into a single repre-
sentation or describe and classify each video frame individually without taking into
account the temporal domain or relations between the frames. e.g. Each observed
image sequence or single frame is then compared to a labeled dataset of actions by
means of nearest neighbor (NN) classification. A different alternative is the use of
discriminative classifiers in which a function that discriminates between two or more
classes is learnt. In any case, dimensionality reduction is desired as typically image
representations are highly dimensional and hence computationally expensive. Com-
mon linear dimensionality reduction methods include Principal Component Analysis
(PCA), local linear embedding (LLE) and locality preserving projections (LPP).
In the subcategory of NN classifiers, a distance measure between the image repre-
sentation and a training data set is used. The outcome of the classification is a set
of nearest neighbors for each action class from which the most common action label
is chosen as result. Another possibility is to calculate an action prototype for each
class in the training set by finding the mean descriptor for each specific class label.
This prototyping of classes is convenient in terms of computational performance as
the search space is reduced. It is important to chose an appropriate training data set,
distance metric, and image representation in order to cope with intra and inter-class
variations.
The work of (Blank et al., 2005) falls into the NN classifiers category. They use the
Median Hausdorff Distance defined as:

DH(s
1, s2) = median

j
(min

i

∥∥c1i − c2j∥∥) +median
i

(min
j

∥∥c1i − c2j∥∥) (2.2)

where c1i and c1i are space-time cubes belonging to the sequences s1 and s2 accord-
ingly. In order to allow more flexibility, only partially overlapping sequences are
compared instead of the whole sequence. In contrast, in the work by (Bobick and
Davis, 2001), Hu moments are used and the Mahalanobis distance is used for com-
parison in order to take into account the variance of each dimension.
Another type in this category are discriminative methods. They attempt to separate
two or more classes instead of modeling them. To this purpose, Support Vector
Machines (SVM) are used in (Jhuang et al., 2007).

2.2.2 Temporal State-Space Models

These types of classifiers try to model an action by calculating the probabilities of
transitions between states which represent the image observations. While generative



11

models learn a joint distribution over observations and action labels, discriminative
models learn the probabilities of the action classes conditioned on the observations.

Although Dynamic Time Warping (DTW) is used for comparison of two sequences,
it can be classified in the category of generative models. It basically consists of
finding the optimal match between the two sequences. In order to perform the
optimization, a local distance measure is required. A long distance indicates that
the difference between the two sequences is large, whereas a short measure indicates
that the sequences are more similar.

Extensive research has also be done using Hidden Markov Models (HMM). In sim-
plified terms, HMM predicts the probability of a sequence to have descended from
a particular prior sequence or vice versa. Applied to action recognition, states in
the model correspond to image representations. Additionally, two assumptions are
made: state transitions are only dependent on the previous state and observations
depend only on the current state (Yamato et al., 1992),(Filipovych and Ribeiro,
2008) and (İkizler, 2008)).

2.3 Hough-Transform based Action Recognition

Hough Transform based-methods are another important type of classificators com-
monly used in both object and action recognition. The additive nature of these
kind of methods make them more robust to loss of information. That is, in order
to recognize an action, not every single pose which is part of this action is needed.
Two relevant works using the Hough Transform Approach are reviewed.

2.3.1 A Hough Forest for Action Recognition

The work by (Yao, Juergen Gall, and L. V. Gool, 2010) addresses the problem of
action recognition by a probabilistic voting framework using Hough Forests, (J. Gall
et al., 2011). Among the advantages of this method are the ability to use dense fea-
tures over sparse features and the possibility to use only one classifier for all actions
instead of separate classifiers for every single action. Hough Forests are based on
Random Forests. They consist of a set of binary decision trees, where each non-leaf
node is associated with a binary test and each leaf node is associated with a class
distribution. The trees are referred as random because they are constructed by se-
lecting a random subset of training samples and for each split in the non-leaf nodes
of a tree, a random subset of possible splits are selected. Among this selection, the
most optimal splitting is chosen.
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Before the Hough Forest can be applied for action recognition, it has to be trained.
Training sets are initially given for each class label. A requirement for each training
sequence is that it should contain at least one complete action cycle. After applying
a 2D Hough Forest to identify the person performing the action, a 2D bounding box
around the person is drawn for each frame. Taking advantage of the high correlation
of person scale and location between frames, a particle filter can be applied in order
to obtain normalized action tracks. That is, a size normalized cuboid enclosing the
object position in each frame. With such action tracks, the vote space is reduced
in each video sequence. After the track generation step, 3D patches are extracted
from the action tracks and given as input for each tree in the Hough Forest for the
training process. Each of the extracted patches can be described as Pi = (Ii, ci, di)
where Pi is a 3D patch of size (xpixels ∗ypixels ∗frames), Ii are the extracted features
at a patch such as grey scale, x and y time derivatives or absolute value of optical
flow in x and y, ci is the action label and di are the displacement vectors from the
patch centre to the action track centre.
After the training phase, the classification and localization of actions is performed.
In this step, as in the training, each video sequence undergoes the process of action
track normalization and feature cuboid extraction. These cuboids serve as inputs
for the already trained Hough Forest. Each cuboid which is passed through the
forest, casts votes in a Hough space for action labels and spatio-temporal centres.
After the whole video sequence has been passed through the forest, local maxima
are searched in the Hough space, thus retrieving class label and temporal location
of the respective action.

The implemented framework for action detection was evaluated with popular bench-
marks consisting of large datasets containing a variety of action recognition scenar-
ios. Including the UCF sports dataset, consisting of broadcast sport action videos
and the UCR Video web Activities Dataset, which features multiple people interac-
tion in surveillance scenarios. The result of applying the framework to this datasets
shows an average better accuracy over other action recognition methods thus achiev-
ing state of the art performance even in challenging realistic video sequences (Yao,
Juergen Gall, and L. V. Gool, 2010).

2.3.2 Coupled Action Recognition and Pose Estimation from
Multiple Views

Human motion can be interpreted on a physical level by, for example, estimating the
3D coordinates of the body pose. Alternatively, it can be interpreted on a higher se-
mantic level as action recognition by understanding the movements of the body over
time. These two are directly connected given that the action being performed by
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the subject restricts the physiological possible 3D poses of a human body to a subset
of action specific poses. Conversely, 3D pose knowledge makes it simpler to identify
specific actions as opposite to simple appearance based knowledge, given that the
pose itself already contains the relevant high-level information of an image frame.
The work developed in (Yao, Juergen Gall, and L. Gool, 2012) is based on the pre-
vious assumptions. In this order of ideas, a system is implemented in which a prior
2D appearance-based action classifier system firstly helps to estimate the 3D pose
and subsequently, the pose information is used to refine the action label (Figure 2.5).

The Hough Forest classifier can be trained and used for recognition either with ap-
pearance based features or with pose 3D based features. In the first step, to have an
initial guess of the action label, the appearance based features such as colour, opti-
cal flow and spatio-temporal gradients are determined. The action specific manifold
obtained in this step is used as a prior distribution for the particle-based optimiza-
tion for the 3D pose estimation. Once the 3D pose is estimated, the Hough Forest
framework can be employed this time using pose 3D based geometric features as
described in (Müller et al., 2005) thus obtaining a more precise action label.

The framework has been tested on standard benchmark datasets on 3D human pose
estimation containing subjects performing different actions. The results showed
that optimizing the particle filter with a prior action estimate improve the pose
estimation. It has also been observed that action estimation using 3D pose features
is more efficient than 2D feature-based estimation. One important advantage is
that due to the view invariance of the 3D pose data, training information can be
obtained from different data sets. Finally, to obtain higher prediction accuracy and
thus better results, the loop can be closed. It means that the last action labeling
step can be fed back as input for the 3D pose estimation and so on.
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Figure 2.5: Action recognition and Pose estimation loop (Yao, Juergen Gall, and
L. Gool, 2012). The loop begins by extracting the 2D image features from which
an initial action statement is derived. This initial guess is used as a prior distribu-
tion for the particle-based optimization for 3D pose estimation. In the end, action
recognition is performed based on pose features extracted from the estimated 3D
pose.



Chapter 3

Basics of Human Body
Representation and the Implicit
Shape Model

Having explained some of the most relevant approaches in action recognition, it is
now appropriate to describe the basic methods used in this work. Recalling from
Section 2, action recognition approaches require finding a suitable representation of
the video frames and subsequently classifying them. The following sections describe
the details of how this is done. Namely, the human body model used for creating a
descriptor and the Implicit Shape Model (ISM) used for classification.

3.1 Human Body Model

Instead of representing video frames with features directly extracted from an image
such as edges, silhouettes, grey values or gradients, it is possible to use a human body
model as descriptor. This model should be able to provide enough information that
allows representation of a wide variety of body postures, thus making the recognition
of different actions possible. A human body model is normally a set of two or three
dimensional points representing the body parts. The model can additionally encode
the relation between the body parts represented as a kinematic chain where each
point is not only described by its coordinates in space but also their relations to the
other body part.
A commonly employed technique for acquiring the 3D coordinates of the body limbs
is the use of reflective markers around the body. A set of synchronized cameras
under optimal illumination condition is placed to record the markers at a high sam-
pling rate. Despite the high accuracy and relative simplicity of data acquisition
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(a) (b)

Figure 3.1: Human body model as proposed in (Gonzàlez, 2004). (a) Stick Figure
model with fifteen joints and twelve limbs. (b) Hierarchy of the stick figure model.

procedure using this technique, such systems are only possible for recording motion
in ideal circumstances. For applications such as video surveillance, human-robot in-
teraction or automatic tagging and indexing of video sequences, another method for
acquiring three dimensional information has to be used. To this purpose, a promis-
ing approach was developed in (Brauer and Arens, 2011). They extract body poses
from simple 2D images and reconstruct the 3D body coordinates using a perspective
projection camera model. Since the mapping from 2D to 3D coordinates can yield
more than one solution, they additionally exploit anatomical constraints and joint
angles probabilities in order to reduce the set of possible solutions and have a more
accurate guess of the actual pose.

3.1.1 Stick Figure Model

In this work, a stick figure model is used to represent the human body as described in
(Gonzàlez, 2004). In this setup, the body is composed of 15 markers corresponding
to 12 limbs as seen in Figure 3.1(a). In addition to the body limbs, a hierarchical
relation between each limb is established. In this way, the body can be seen as a
kinematic chain where the hip joint is the parent and the rest of the joints can be
reached from this point on.
The model reflects with enough accuracy the anatomical structure of humans, thus
enabling a rich representation of body postures. However, expressing the body
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posture directly with coordinates in space has important disadvantages. Positions
of the body parts can widely differ between subjects performing the same action
mainly due to differences in body length. Furthermore, the same action can be
performed in several ways, implying variations in the movements of every limb (such
as the stride of a walk action) and consequently in the space coordinates of every
point. Given these conditions, a representation of the body by means of different
coordinate systems is more convenient.

3.1.2 Joint-Angle Descriptor

Every limb in space could be easily represented as a local coordinate system by
a transformation matrix M ∈ R3x3 with respect to a global coordinate system.
However, such a matrix is not efficient because nine different parameters have to be
set, where only three angles are necessary to express a rotation. This redundancy
make this method more prone to computational errors. Alternatively, Euler angles
can be employed. With this strategy, rotations are made in a specific order where
the first rotation is always relative to the global coordinate system. While Euler
angles are easy to compute, they exhibit some disadvantages. On one hand, the
presence of singularities make it in some cases impossible to determine the order in
which the rotations where made. On the other hand, discontinuities over time are a
challenge.
Bearing these difficulties in mind, an alternative representation is chosen in (Gonzàlez,
2004). They use a mapping to a higher dimensional space to solve the discontinuity
problem. Each limb is represented by 3 different values: elevation ϕ, latitude θ
and longitude ψ as shown in Figure 3.2a(a). These values are computed with the
following equations:

ϕ = tan−1

(
yi − yj√

(xi − xj)2 + (zi − zj)2

)
(3.1)

θ = tan−1

(
xi − xj√

(yi − yj)2 + (zi − zj)2

)
(3.2)

ψ = tan−1

(
zi − zj√

(xi − xj)2 + (yi − yj)2

)
(3.3)

Given this representation, angles lie in the range [−π
2
, −π

2
] and the discontinuity prob-

lem is avoided. Although the representation with absolute angles is more robust to
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(a) (b)

Figure 3.2: Joint-angle descriptors. (a) Visualization of the absolute angles in 3D
polar coordinates. (b) Visualization of the relative angles between two limbs.

spatial variations than a three dimensional coordinates representation, it still lacks
the ability to generalize over some limb movements that are semantically similar
but have absolute angles that can significantly differ. For example, the movement
of one hand from side to side could be performed with the upper arm positioned in
different configurations, but it would still be a waving action. However, a numerical
comparison using the absolute angles of such actions would regard them as differ-
ent. To overcome this problem, the body poses are represented with relative angles
between joints (see Figure 3.2(b)). These are calculated by subtracting the abso-
lute angle values of corresponding parent-child pairs according to the established
hierarchy (3.1b(b)).

3.1.3 Pose Normalization

Before calculating the relative angles, it is necessary to express the three dimensional
points in a local coordinate system in order to achieve view invariance. The initial
step in the normalization is to define a local coordinate system specified by a rotation,
a translation, and a scaling from the global coordinate system. This can be achieved
by employing affine transformations.

The local coordinate system is chosen as follows: the origin is located in the middle
between the right hip, and the left hip coordinates, this point is taken as the trans-
lation vector v⃗t. The x axis is placed along the hips and the y axis is calculated
as the vector orthogonal to x and the vector along the torso. Finally, the z axis is
found as the cross product between x and y. The vectors b⃗x b⃗y and b⃗z are computed
as follows:
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b⃗x = v⃗t − rightHipCoordinate (3.4)
b⃗y = b⃗x × (v⃗t − neckCoordinate) (3.5)
b⃗z = b⃗x × b⃗y (3.6)

Mrot =

[
b⃗x b⃗y b⃗z 0

0 0 0 1

]
(3.7)

Mtrans =

[
0 0 0 v⃗t

0 0 0 1

]
(3.8)

Mscale =


s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1

 (3.9)

In addition, the scaling factor is chosen as the length of the vector formed by the hip
and the neck markers. Once the above terms are calculated, the affine transformation
from 3D world coordinates to normalized person coordinate systems can be defined
as follows:

A = (Mtrans ∗Mrot ∗Mscale)
−1 (3.10)

Every joint in 3D world coordinates is then multiplied by the affine transformation
matrix. With the local 3D coordinates available, the absolute and relative angles of
the limbs are calculated for each video frame.

3.1.4 Building the Descriptor

Having the data normalized and represented according to the human body model
presented above, it is now possible to create a simple descriptor. This can be em-
bedded in a one dimensional vector xs = (ϕ̃1, θ̃1, ψ̃1, ..., ϕ̃12, θ̃12, ψ̃12).
Information about the variation of the angles in each time step can also give im-
portant clues on the action being performed and improve the robustness of the
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descriptor. Therefore, In addition to the relative angles, the first and second deriva-
tives are calculated following the implementation proposed by (Zepf, 2012). They
find the derivatives using the differential quotient between subsequent data points
in three different ways:

forward : f ′(x) =
f(x+ h)− f(x)

h
(3.11)

backward : f ′(x) =
f(x)− f(x− h)

h
(3.12)

symmetric : f ′(x) =
f(x+ h)− f(x− h)

h
(3.13)

Besides the relative angles of each pair of joints, the global coordinates of the hip
and its variations are also calculated in order to give a clue on the global motion of
the body within the scene. Grouping all the terms together in one vector yields:

xs =: D (3.14)

This descriptor is used to represent the body pose in each time step. Hence, the
classification can be performed using the Implicit Shape Model as explained in the
following section.

3.2 Implicit Shape Model Based Action Recogni-
tion

The classification method employed in this work is based on an adaptation of the
action recognition of the Implicit Shape Model (ISM) approach which was initially
introduce by (Leibe et al., 2008). The original idea was the development of a method
capable of recognizing previously unseen objects in complicated scenes where large
variation of features such as object color, texture, and shape are present. This is
achieved by first creating a codebook of local appearances that learns the variability
of an object category. That is, instead of defining explicitly all possible shapes of a
class object, allowed shapes are defined implicitly by agglomerating similar features
into clusters. Although the method was first used in object detection, an adaptation
to action recognition is possible. The details of the method are described in the
following subsections.
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3.2.1 Codebook Generation and Clustering

The approach begins with the generation of a codebook. Namely, building a visual
vocabulary of similar local appearances that are typical to a specific object class.
In order to create the codebook, the input features have to be chosen. In the case
of object recognition, an interest point detector is used to find relevant regions
in an image. Afterwards, grey value patches and local shape context features are
extracted from these regions (see (Leibe et al., 2008) for details). Once the features
from a training dataset have been obtained, they are used as input for the clustering
algorithm.

A key element in the ISM approach is the clustering step. It consists of an un-
supervised classification of patterns (usually feature vectors) into groups based on
similarity. Once a dataset is clustered, patterns belonging to the same cluster are
more similar to each other than they are to patterns associated to other clusters. The
general steps in any clustering algorithm can be defined as: pattern representation,
definition of a distance metric, grouping and optionally data abstraction.

The pattern representation step is related to the identification of appropriate vari-
ables to use as descriptors and their properties such as range, scale and domain. The
next step is the definition of a suitable distance metric in order to have a measure
of similarity and thus be able to group the patterns, commonly used distance metric
include Euclidean distance, Mahalanobis distance or Hamming distance in the case
of binary features. Subsequently, the grouping of similar patterns can be performed
in a number of ways such as hierarchical clustering algorithms, partitional clustering
algorithms or probabilistic methods among others. Lastly, data abstraction refers
to the process of extracting a compact representation of each cluster in manner that
it is efficiently representative of the features contained in the cluster.

3.2.2 The Training Procedure

After the construction of a codebook, the ISM method is followed by a second step
in which the spatial probability distribution Pc is learned. An important design
constrain is considered: the spatial probability distribution for each codebook entry
is estimated in a non-parametric manner. Hence, the true distribution of the data
is learned rather than making possibly oversimplifying Gaussian assumptions.

In order to learn the spatial probability distribution, the following procedure is
performed: features of the training images are again extracted using an interest
point detector and each of them is compared against the codebook entries. During
the comparison, not only the best occurrence of the feature f to the codebook entry
Ci is saved, but also all occurrences whose similarity is above a threshold value t.
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The occurrences are saved in an array Occ. This array also saves all positions where
the match occurred relative to the object centre which is known in advance for each
training image (see Figure 3.3). By storing the occurrence locations in this manner,
the spatial distribution of each sample is modelled in a non-parametric way.(See
Algorithm 1 for details).

Algorithm 1: The training procedure . (Leibe et al., 2008).
F ←− ø // Initialize the set of feature vectors F
forall the training images do

Apply interest point detector.
forall the interest regions lk = (lx, ly, ls) with descriptor fk do

F ←− F ∪ fk
end

end
Cluster F with cut-off threshold t and keep cluster centers C.
forall the codebook entries Ci do

Occ[i]←− ø // Initialize occurrences for codebook entry Ci

end
Compute ocurrences Occ forall the training images do

Let (cx, cy) be the object center at a reference scale.
Apply the interest point detector.
forall the interest regions lk = (lx, ly, ls) with descriptor fk do

forall the codebook entries Ci do
// Record an occurrence of codebook entry Ci

Occ[i]←− Occ[i] ∪ (cx − lx, cy − ly, ls)
end

end
end

3.2.3 The Recognition Procedure

Once the codebook and its respective occurrence array have been obtained, new
test images can be recognized. The recognition procedure is divided into two steps:
Probabilistic Hough Voting and Scale Adaptive Hypothesis Search.

The first step consist of casting votes from each of the image features. Therefore,
features from the test image are initially extracted. By comparing them to the
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Figure 3.3: ISM Training procedure. Image local features are extracted with an
interest point detector. Subsequently, the appearance codebook is created and, in a
second iteration, a spatial distribution is learned (Leibe et al., 2008).

codebook, a set of valid hypothesis Ci with a corresponding probability p(Ci|f, l)
are obtained. That is, for each entry Ci several valid object scales and centres can
in principle be obtained according to the learned spatial distribution. In particular,
the probability that the test image contains an object category on centred at x given
that the feature f was found in the image at location l is given by:

p(on, x|f, l) =
∑
i

p(on, x|f, Ci, l)p(Ci|f, l). (3.15)

In the first term of Equation (3.15), dependency on f can be removed since the
unknown image feature has been replaced by a known interpretation. Similarly,
the dependency on l in the second probability term can be eliminated since the
matching of features is done independent of the location of the image feature. After
these simplifications, Equation (3.15) becomes:

p(on, x|f, l) =
∑
i

p(on, x|Ci, l)p(Ci|f). (3.16)

The first term in the above equation represents the probabilistic Hough vote for an
object class and location given a feature interpretation. The second term indicates
the quality of the match between the image feature and codebook cluster. Based on
these definitions, the recognition procedure is performed as follows: each extracted
feature from the test image is compared against all entries of the codebook. If the
similarity between a feature and a codebook entry is bigger than the threshold t, a
match between the feature fk and codebook entry C∗i together with the location
offset is kept in a vector M . After having compared feature fk to every entry in
the codebook, the probability that the found matches are correct is estimated as
p(C∗i, fk) =

1

∥M∥
. For every single found match in M , votes are generated by
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iterating through the occurrences of the codebook entries. The vote location is set
at the position x calculated with the feature location and the offset of the occurrence.

The second step in the recognition is the Scale Adaptive Hypothesis Search. After
the vote generation stage, the ideal is to find maxima in the voting space. In order
to discard locations in the space with insignificant number of votes, a binned 3D
Hough accumulator array is used to collect the votes. After having found those
promising locations, a Mean-Shift search is performed. It is expressed as:

p̂(on, x) =
1

Vb

∑
k

∑
j

p(on, xj|fk, lk)K(
x− xj
b(x)

) (3.17)

where K is a symmetric kernel function with bandwidth b. This search strategy is
guaranteed to converge to local modes of the underlying distribution. The algorithm
is adaptive because the bandwidth of the kernel is made dependent of the scale
coordinate.

3.2.4 Adaptation from Object Recognition to Action Recog-
nition

Action recognition in video sequences normally requires, in addition to the body
pose estimation, finding the instant in time or time interval in which the action
is being performed. In Hough transform based methods, the inclusion of the time
parameter implies a higher dimensional Hough space. This requirement, together
with the estimation of scale and position of the object, make the computational costs
for such procedure high and inefficient. A solution to this problem is given in (Yao,
Juergen Gall, and L. V. Gool, 2010). Nevertheless, The method developed in this
work is only concerned with estimating the time interval where specific actions take
place. This is based on the assumption that for each frame, the three dimensional
coordinates of the body markers are already available.

The adaptation of the ISM developed in this work is based on the implementation
in (Zepf, 2012). They also calculate the joint angle descriptor and perform a Hough-
based classification that estimates action types and their respective intervals in time.
During classification, they find similar poses of the input descriptor by performing
a nearest neighbor search in the training data set. As an extension to their work, in
this thesis, a clustering of the training data is performed before the nearest neighbor
search, thus reducing the search space.

As in object recognition, the clustering consist of comparing and grouping similar
descriptors in the training data set. In this case, instead of image features, each
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(a)

(b)

Figure 3.4: Comparison Between ISM for Object and Action recognition.

descriptor represents the body pose per frame (see Section 3.1.3). Once the de-
scriptors are grouped, each cluster can be interpreted as a set of similar body poses
represented by the cluster centroid Cj. In addition, each cluster keeps a vector O[j]
containing the body poses with its respective action labels Al and time offsets toffset
indicating where the action may end. Figure 3.4 depicts a comparison between
object and action recognition.

Analogous to the ISM for object detection, after having learned a probabilistic dis-
tribution of the features, it is now possible to perform the recognition of actions
with test video sequences as follows: initially, the descriptor Di of a body pose (one
video frame) at time step i is compared to every centroid Cj generated during clus-
tering. This is done by searching the nearest neighbours of the current descriptor
with respect to the cluster centroids. If the distance between the descriptor and its
nearest neighbour is bigger than a threshold Thr, each of the entries in Occ[k] of
the matched centroid Cj∗ generates votes for the end of actions according to their
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action label and offset (See Algorithm 2).
Once the whole sequence of poses has been iterated to cast votes, The mean shift
mode seeking algorithm is performed on the resulting Hough-space in order to find
maxima indicating when an action may end. It is important to note that not all the
frames of an action have to be processed in order to produce an action statement.
As frames are being processed, votes accumulate and peaks of maximum values start
to develop. Therefore, it is possible in some cases to find clear maxima in the voting
space after a few frames has been processed and thus generate an action statement.

Algorithm 2: Voting algorithm for action recognition
// Initialize the Hough voting space V ←− ∅ Create a pose descriptor for
each video frame
for i←− to numberOfFrames do

//Find nearest N neighbours of current fame descriptor in codebook
NearestNeighbours←− SearchNN(Descriptor[i], codebook)
forall the Centroids Cj in NearestNeighbours do

if sim(Descriptor[i], Cj > Threshold then
forall the Cluster members Occk in Cj do

voteIndex←− i+Occk.F ramesToEnd
V ←− V ∪ (voteIndex,Occk.ActionLabel)

end
end

end
end
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(a) (b)

(c) (d)

Figure 3.5: Development of the voting space over time for a walk action. The
images from (a) to (d) show the Hough voting space for different instants in time in
increasing order: (a) t = 60, (b) t = 80, (c) t = 100, and (d) t = 120. As the time
advances, the peak around t = 140 keeps increasing. This indicates how the walking
action ending at t = 140 can be predicted many frames in advance.
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Chapter 4

Developed Methods

Having introduced the basics of the action recognition framework, it is now possible
to incorporate some extensions in the initially developed framework in (Zepf, 2012).
This section describes the implementation of an alternative descriptor that is in-
tended to improve the robustness of the framework and reduces the dimensionality
of the body pose representation. Additionally, as previously mentioned, a cluster-
ing algorithm to improve run-time is also described. At the end, a support vector
machine is trained and applied to classify the detected actions.

4.1 Geometric Descriptors

The use of a joint angle model for representing a human body posture brings several
advantages. Not only is it relatively easy to compute, but also overcomes the prob-
lem of differences in limb lengths. Before the angles are calculated and the actual
descriptor is constructed, an affine transformation for dealing with the view invari-
ance problem is additionally performed (see Section 3.1.3). Despite the advantages
of this method, the joint-angle descriptor (Section 3.1.2) fails when it comes to a
more general representation of similar poses. Namely, by numerically comparing
two actions, they may be regarded as different even though they are logically simi-
lar. For example, the joint angles of a jump action could significantly differ between
subjects depending on the body constitution or the length and height of the jump.
In order to represent actions in a more semantic level, geometric boolean features
descriptor are introduced in this work.

The implementation of the new descriptor follows the idea proposed in (Müller et
al., 2005). They introduce an action descriptor that expresses geometric relations
between body parts, thus making the representation more robust to spatial variations
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and closing the gap between logical similarity as perceived by humans and numerical
similarity measures.
The geometric features can be implemented using the same human body model al-
ready described in Section 3.1. By establishing a few boolean geometric functions
relating body parts, a rich set of meaningful body pose features is constructed. Be-
fore defining the most relevant features used in this work, the notion of boolean func-
tion is introduced. A boolean function is mathematically defined as F : ρ→ {0, 1}
where combinations such as F1 ∧ F2 or F1 ∨ F2 are also valid boolean functions.
Furthermore, a set or vector of functions can be defined as F : ρ → {0, 1}F . The
application of the function over a pose P ∈ ρ is then denoted as the feature F (P ).
Before being able to establish such boolean relations, a meaningful continuous mea-
sure M of certain parameter and a threshold tr have to be chosen. Having this, the
boolean feature can be defined as:

F (M) =

{
1 if M ≥ tr,

0 otherwise.
(4.1)

4.1.1 Geometric Measures of Human Body Poses

Following the above definition, the initial step in this approach is to define a set of
measures. To this end, the position of joint ji at a given time t is represented as
three dimensional points pji,t ∈ R3, 1 ≤ i ≤ 4. Some of these measures for specific
sets of joints are depicted in Figure 4.1 as qualitative geometric relations between
joints.
Firstly, the ”distance to plane” is defined as the distance measure from one point to
a plane. The function takes four joints as arguments, where the first three are used
for the plane and the fourth is used as the point whose relation to the plane is to be
found. Then the distance feature can be defined as:

D = dist(pj1,t1 , ⟨pj2,t2 , pj3,t2 , pj4,t2⟩). (4.2)

In the case of t1 = t2, the function becomes a simple measure of distance in space.
By choosing different times, distances between planes and points separated in time
are created. Alternatively, the plane can be specified by a point lying on it, and a
normal vector.
Another possible feature is the measure of a joint velocity with respect to a plane.
Similar to the distance feature, the plane can be either defined by three points or
by a normal vector and one point. Given that the velocities vji,t ∈ R3 of each joint
ji at a given time t are available, a velocity feature can be defined as follows:
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(a) (b) (c) (d)

Figure 4.1: Geometric relations between joints (Yao, Juergen Gall, and L. Gool,
2012). (a) Distance from a joint (red) to a plane defined by three joints (black). (b)
Distance between two joints. (c) Projection of joint velocity on plane normal. (d)
Projection of joint velocity on vector.

V n(j1, j2, j3, j4; t1, t2) = vj1,t1 · n̂⟨pj2,t2 ,pj3,t2 ,pj4,t2 ⟩. (4.3)

A simpler and equally powerful feature can be defined as the projection of the
velocity vector of a joint over a vector defined by two other joints. It is expressed
as:

V e(j1, j2, j3; t1, t2) =
vj1,t1 · (pj2,21 − pj3,t2)
∥ (pj2,21 − pj3,t2) ∥

. (4.4)

For some kind of actions, it is useful to know whether two joints are connected or not,
In this case, it is necessary to find the distance between them. This is accomplished
with the following formula:

Jd(j1, j2; t1, t2) =∥ pj1,t1 − pj2,t2 ∥ . (4.5)

One more useful feature is made by defining the angle between a pair of limbs, where
a limb is built by two joints according to the kinematic chain. This is expressed as:

Aj(j1, j2, j3, j4; t1, t2) = cos−1 (pj1,t1 − pj2,t1) · (pj3,t2 − pj4,t2)
∥ pj1,t1 − pj2,t1 ∥∥ pj3,t2 − pj4,t2 ∥

. (4.6)
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Based on the previous definitions, other kinds of measures can be constructed.
Namely, by talking the first and second derivatives of distances, velocities, and
angles, complementary information of an action is obtained. Having defined dif-
ferent measures, Boolean features can now be created by additionally specifying a
threshold. This is described in the following subsection.

4.1.2 Building Boolean Geometric Descriptors

Building a descriptor becomes now a matter of choosing a set of the previously
described measures and a threshold for each one. In order to obtain a meaningful
representation, the features have to be selected according to which measure best
characterizes a certain pose or sequence of poses. For example, in a typical walk
action, the feet move alternately forward and backwards. To find such a sequence
pattern, the following functions are defined using the notation previously described:

F r = F (Dr) = F (D(HipCentert1, LeftHipt1, LeftFoott1, RightFoott1)). (4.7)

F l = F (Dl) = F (D(HipCentert1, RightHipt1, RightFoott1, LeftFoott1)). (4.8)

F 2 =

{
F r

F l

}
(4.9)

In the above definition, each function indicates respectively whether the right foot or
the left foot is in front or behind the body. By combining both functions in a function
vector, a simple but powerful geometric feature capable of recognizing actions with
strong spatial variations is built. Although it is already possible to recognize walk
actions with simply two features, it is normally desired to have additional features
that are characteristic of the action in order to achieve better discrimination results
when identifying several types of actions simultaneously. For instance, It is useful
to define two additional features for a walk action which indicate weather the hands
move sequentially forward and backward.

While choosing the features, it is also important to thoroughly decide the correct
threshold values in order to give a meaningful geometric relation. Since the sub-
jects performing an action have different limb lengths, it is also desired to normalize
the pose before applying the geometric features. This is specially needed when the
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(a) (b)

Figure 4.2: Visualization of Equation 4.9. (a) Right foot in front. (b) Left foot in
front. Two geometric features useful for the recognition of a walk action

measures are based on distances. However, when using velocity functions instead of
distances, it is normally sufficient to establish the threshold value as zero removing
the need for normalization. For example, with a zero threshold, the V n function
would simply indicate whether the joint is moving closer or moving away from the
given plane.

4.2 Clustering with Reciprocal Nearest Neighbour

Once a valid representation of body poses is obtained, either as joint angle descriptor
or as geometric feature descriptor, a grouping of similar poses can be performed.
This is done using the Reciprocal Nearest Neighbor (RNN) algorithm originally
introduced in (de Rham, 1980). The main idea behind the algorithm is the formation
of pairs that are reciprocally nearest neighbors. That is, given two vectors xi and
xj, xi is the closest neighbor of xj and vice versa. Once such pair of vectors is found,
they can be merged into one cluster.

An efficient implementation of the RNN is done by using NN chains as described
in (Benzécri, 1982). A NN chain is a list composed by vectors arranged so that the
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Figure 4.3: A simple representation of the RNN algorithm.(Leibe et al., 2008).

next element in the list is always the NN of the previous element. Consequently, a
NN chain of length l can be defined as {x1, x2 = NN(x1), . . . , xl−1, xl = NN(xl−1)}
where NN(xi) is the nearest neighbor of xi. Given that the distances decrease from
one element to another, the RNN pair is found at the end of the list.
Referring to Figure 4.3, the clustering algorithm proceeds as follows: Initially, an
arbitrary vector x1 is chosen from which the NN chain is built resulting in d12 >
d23 > d34 . When the first fourth elements are in the list, it is found that d45 > d34,
therefore no more elements can be appended to the end of the list and a RNN pair
is found. If the similarity between x3 and x4 exceeds a minimum threshold, both
vectors are merged into a cluster. Otherwise, the chain is ignored.
By merging elements in this way, the Bruynooghe’s reducibility property has to be
fulfilled. This property states that when two clusters ci and cj are merged, the
distance of the new cluster to any other cluster cj may only increase:

D(Ci, Cj) ≤ min(D(Ci, Ck), D(Cj, Ck)) ≤ D(Ci∪j, Cj). (4.10)

It can be demonstrated that this condition is fulfilled for the group average criterion
and the centroid criterion based on correlation. This condition guarantees that after
the merging of clusters, The NN chain for the remaining elements stays unaltered
and thus can be used for the next iteration. The process continues until the NN
chain has no more elements or until the chain is ignored. In either case, a new
arbitrary vector is chosen and a new NN chain is built.
Every time that a new cluster is built, its distances to the other clusters have to be
recomputed. If the cluster similarities can be expressed in terms of centroids, the
computation can be performed in constant time and only the mean and variance
of each cluster need to be stored. This is the case for the group average crite-
rion, whose similarity, using Euclidean distances, can be computed as sim(X,Y ) =
((σ2

x + σ2
x) + (µx − µy)

2). Where X = {x(1), · · · , x(N)} and Y = {y(1), · · · , yN}.
In this way, both the new mean and variance can be computed in an incremental
manner:
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µnew =
Nµx +Nµy

N +M
(4.11)

σ2
new =

1

N +M

(
Nσx +Nσy +

NM

N +M
(µx − µy)

2

)
(4.12)

The entire clustering algorithm results in a O(N2d) time and O(N) space complexity
(Leibe et al., 2008).

4.3 Time-Invariant Action Recognition

Since the duration interval of an action class can considerably differ between subjects,
the time scale is an important issue that has to be confronted in human action
recognition approaches. Thus, similarly to scale invariance in object recognition,
time invariance in action recognition is a fundamental requirement for an optimal
classification and performance.
In comparison to more complicated methods for achieving time invariance such as
Dynamic time wrapping (DTW), the probabilistic nature of the ISM allows for a
simple inclusion of action recognition at different time scales. The invariance is
implicitly accomplished by using training data with different actions at of the same
class at multiple time scales. During classification, the training sequence with the
most similar time scale in relation to the test image, will generate higher peaks in
the voting space with smaller variance.
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Chapter 5

Implementation

This chapter gives an overview of the most important modules implemented in the
action recognition framework. The whole framework can be seen as a pipeline com-
posed of four main stages (see Figure 5.1):

Figure 5.1: Stages of the action recognition framework. The input from different
sources represents sequences of 3D coordinates of markers in the body. After pro-
cessing each frame or a group of frames, an action statement is given.
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The first module consist of the hardware used for the real time acquisition of three
dimensional body markers and the software that interprets the input data and for-
wards it to the next stage. In second place, a module is implemented whose tasks is
to create a descriptor out of the body markers. Subsequently, a module for loading
and editing the training data is implemented. Having a descriptor of the body pose
and the training data, the voting stage performs a comparison and generates votes
in the Hough space for each of the possible actions being performed. Finally, a mean
shift mode seeking is performed in order to find maxima in the Hough space and
give a clear action guess. In the following sections, a more detailed description of
the pipeline is given.

5.1 Data Acquisition

In this stage, the user has the possibility to chose the source of data for action
recognition task. A database with different types of human actions represented as
sequences of 3D coordinates is available in C3D format (CMU: Carnegie-Mellon
MoCap Database. 2003). Additionally, The recognition can be performed in real
time using the Microsoft Kinect depth sensor. The following sections give a detailed
description of the two different data sources and their integration in the framework.

5.1.1 Motion Capture Database

The database used for training and testing consist of C3D files for different action
types. The C3D is a binary file format typically used in Biomechanics, Animation
and Gait Analysis laboratories to record synchronized 3D and analog data. The
format provides a unique standard for storing raw 3D data and analog sample data,
together with information that describes the stored data.

5.1.2 Integration with Kinect Depth Sensor

The real time data is acquired using the Microsoft Kinect depth sensor. This device
provides three different types of data streams: color images, depth images and the
skeleton coordinates.
The color image stream delivers 32 bit RGB images at a resolution of 640 × 480
pixels at up to 30 frames per second(FPS) or a resolution of 1280 × 1024 pixels
at up to 10 FPS. The depth image streams provides data made up of pixels that
contain, for each (x, y) coordinate in the depth sensor’s field of view, the distance in
millimeters from the camera plane to the nearest object. This stream additionally



39

(a) (b)

Figure 5.2: (a) Acquisition of depth image data with Microsoft Kinect depth sensor.
The data contains (x, y) coordinates with the distance from the camera plane to
the nearest object. (b) The 3D right-handed coordinate system used by Microsoft
Kinect depth sensor for representing skeleton 3D coordinates.

contains player segmentation data indicating the index of a unique player detected
in the scene. The depth image is available in 3 different resolutions: 640 × 480,
320 × 240, and 80 × 60 pixels. Finally, each frame of the depth image is processed
by the Kinect runtime into skeleton data. This data contains the 3D coordinates of
maximum two human skeletons that are visible in the depth sensor. The coordinates
are expressed in meters and the x,y, and z axis are oriented as shown in Figure b.

The three different data streams are integrated into the framework. This is done
using a separated thread from the main application which constantly reads the data
from the sensor and sends it to the main window of the application where it can
be visualized. The skeleton coordinates and the depth image are rendered in three
dimensional frames (see Figure 5.3) in which the point of view may be translated and
rotated. Additionally, the tilt of the sensor can be set for angles between -27 and +27
degrees in order to change the filed of view. Although the depth image and colour
image are important for visualization purposes, only the skeleton data is sufficient
for the action recognition procedure. If real time mode is selected, then the Kinect
sensor is chosen as the source of the data. During real time recognition, k number of
frames are collected into a batch and passed to the next stage. Subsequently, each
video frame in the batch is transformed into a descriptor representation passed to
the next stages. Each time a batch is processed, an action statement can be given.
This procedure repeats for the next incoming frames from the sensor.
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Figure 5.3: Sequence of a run action. A plane between the hips and the left foot is
rendered in order to find characteristic patterns as relations between the plane an
other joints

5.2 Descriptor Types

The GUI allows one to choose between three different type of descriptors: absolute,
joint-angle and geometric descriptor. Having chosen one of the three descriptors,
the values may be visualized in a table or as a grayscale image. The absolute
descriptor represents the data as simple normalized 3D coordinates while the joint
angle descriptor represents the body pose as a set of angles and optionally their
first and second derivatives (see Section 3.1.2). Lastly, the geometric descriptor
represents boolean features corresponding to geometric relations between the body
limbs (see Section 4.1). Different geometric measures may be chosen by specifying
their values in an xml file configuration. Here, for each geometric measure, a function
type and its parameters is given. The functions in Table 5.1 are available.

Derivatives of each function in Table 5.1 are also available as geometric features. In
order to create a boolean vector of features out of the measures, a threshold value has
to be specified together with the function type and its parameters. Additionally, the
skeleton rendering frame can be used as a visual aid for selecting geometric measures.
This is done by drawing normal planes and vectors around the skeleton (see Figure
5.3).

Similarly, when the joint-angle descriptor is selected, an xml file specifies which
relative angles are to be included in the descriptor and whether the first and/or
second time derivatives of the angles between specific limbs are considered in the
descriptor.



41

Table 5.1: Geometric functions definition.

Feature Parameters Description
DistanceToPlane joint1, joint2,

joint3, joint4.
Distance between joint4
and a plane formed by
joint1, joint2 and joint3
(Equation 4.2).

DistanceToPlaneVector joint1, joint2,
joint3, joint4.

Distance between the fourth
joint and a plane that is
normal to the vector n⃗ =
(joint2 − joint3) and con-
tains joint4.

VelocityToPlane joint1, joint2,
joint3, joint4.

Velocity v⃗ of joint4 in
the normal direction of the
plane formed by joint1,
joint2 and joint3 (Equa-
tion 4.3)

VelocityProjection joint1, joint2,
joint3

Projection of the velocity
vector v⃗ of joint1 over the
vector b⃗ = (joint3−joint4).
(Equation 4.4)

DistanceBetweenJoints joint1, joint2 Euclidian distances be-
tween joint1 and joint2
(see Equation 4.5),

AngleBetweenJoints joint1, joint2,
joint3, joint4

Angle between a pair of
limbs specified as: ⃗limb1 =
joint1−joint2 and ⃗limb2 =
joint3 − joint4. (Equation
4.6).
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5.3 Training Stage

In order to learn new actions, the framework must be able to generate a codebook out
of training video sequences containing an action type and a pair of frames to indicate
where the action starts and ends. To this end, a training stage is implemented in the
GUI. The interface allows loading and editing of C3D files as well as clustering of the
loaded data. The user can load a single file and manually edit the action label, start
frame and end frame with the help of a rendering frame showing the file currently
loaded. The user has also the option of loading an xml file which already specifies
the set of training files to be loaded with their respective action labels, start and
end fames. Such file is referred as a training dictionary in the following sections.

Once the training data is loaded. It is converted to a descriptor whose type has
to be the same as the one used for representing the test sequence. Otherwise the
comparison between descriptors is not possible. With the data of all the training
sequences converted to a descriptor type, the RNN clustering can be performed.
Here, it can be specified whether the voting stages uses clusters or not.

5.4 Voting Stage

With both the test and training sequences converted to a suitable descriptor, the
comparison and vote casting can be performed. The implementation is based on
the previously described approach (Algorithm 2). The search of NN is performed
in a separate thread using the FLANN library. It performs a fast approximate
nearest neighbour search that can reach an improvement in speed of several orders
of magnitude compared to other algorithms. Different parameters have to be set for
the search depending on the type of data being handled. In this implementation a
suitable metric distance have to be chosen depending on the descriptor type. For
the joint-angle descriptor, Euclidean distance is used, whereas for the geometric
descriptor, Hamming distances is used.

The interface also shows a plot of the voting space for each of the actions contained
in the training data. The x axes represent the time (frame number) while the y axes
indicate the number of votes. If the real time mode is selected, The main thread
collects a certain number of frames (batch) and sends them to the voting stage.
This event causes the plots of the votes density to update. It is possible that the
sequences of frames arrives at a higher rate than it can be processed by the voting
stage. In order to cope with this, a frame buffer is implemented in the main thread.
It keeps accumulating the incoming frames in a queue and only release a batch when
it has already been processed by the voting stage thread.
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Figure 5.4: Training stage. Screen shot of the GUI for adding and editing training
files. The ’Loaded training files’ list on the left shows every single file that has
been included with the ’Add’ button for editing purposes. When a file of this list is
selected, the corresponding skeleton poses are rendered allowing the user to choose
the action label, start frame, and end frame. Once the file parameters have been
edited, the ’Finish editing’ button has to be clicked in order to add the file into the
current training data set. When a file has been added, it is displayed in the ’Added
training files’ on the left side of the GUI. Additionally, the GUI provides the option
of loading an entire set of training files with the ’Load dictionary as xml’ button.
Furthermore, The files that have been previously edited can be saved in a xml file
with the ’Save dictionary as xml’.
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5.5 Mean Shift Stage

The search for maxima in the voting space and its result is performed in this stage.
Every time step the voting stage indicates when its results are ready and forwards
them to the mean shift stage. This stage consist of approximating the vote density
with Gaussian density kernels of a predefined variance value and subsequently finding
the modes.

The resulting Gaussian approximation as well as the corresponding points where the
maxima occur are shown in this stage. It is also possible to visualize the plots of the
resulting maxima for each action that was present in the training data. With this
information, it is already possible to give an action statement of where an action
may end. As in the voting stage, the GUI allows the user to save the different plots.

5.6 Action Classification

While an action takes place, the mean shift algorithm estimates the rising modes of
the vote distribution per action, see for example Figure 6.26. The final step to be
performed is classifying the “good” modes, which vote for an end of an action, and
the clutter. In order to do this a support vector machine (SVM) is trained per action
class and during action recognition applied on its action class. The input features
for the SVM are the amplitude of the nearest future mode and its current time. For
example in Figure 6.20 both sit curves are the positive features, and all other values
belong to the negative features. For simplicity we started with a linear kernel. After
having trained a SVM on a training data set per action class in advance of the action
recognition, they are applied to every next future mode during runtime.

Figure 5.5 visualizes the classifier score for a sit action with a SVM trained on
sit data. The classification is obtained from that data by applying the signum
function. That means, that after 40 frames (0.3 seconds) the classification raises the
recognition of a sit action. All other classifiers (not shown) in that examples did not
raise any positive action classification.
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Figure 5.5: Classifier score for a sit action with a SVM trained on sit data. A
positive classifier score indicates a sit action, a negative score not a sit action.
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Chapter 6

Evaluation

In order to determine the performance of the developed method, different kinds
of experiments were arranged: Section 6.1 presents experiments for verifying the
correctness of the implementation of the descriptors. In Section 6.2, the intra-
class variance is evaluated for five different kinds of actions. Section 6.3 shows the
classification results for the case when the training data set consists of different
types of actions. The experiments in Section 6.4 evaluate the time-invariance of
the framework for different time scales of one specific action. Section 6.5 presents
performance results on the data acquired with the Microsoft Kinect depth sensor.
Finally, in Section 6.6 the real time capabilities of the framework are assessed.

6.1 Verification of the Correctness of the Imple-
mentation

Before performing any real action recognition tests, it is important to verify that
the framework was implemented correctly. This is done as follows: a single video
sequence Vi containing an action Ak is introduced in the dictionary as training data.
Subsequently, the exact same video sequence Vi is chosen as the input data. The
input sequence is compared to the training sequence frame by frame. For each
processed frame, the descriptor votes for the end of the action. Subsequently, the
mean shift mode seeking is performed on the generated voting space and the next
future mode value is extracted (Figure 6.1). The point in time where this peak
occurs, indicates where the action may end in the future, and the amplitude of
the peak indicates how strong the prediction is. In this way, in every time step,
the maximum amplitude can be visualized. This experiment was performed with
different types of actions: walk, jump, run, sit, and wave. In each action class, the
joint-angle descriptor as well as the geometric descriptor were tested.
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Figure 6.1: Visualization of the mean shift density estimation. The set of figures
from (a) to (h) show the progress of the voting densities (left column) with their
corresponding mean shift mode estimations (right column) at four different time
steps for a walk action. The values for the amplitude plots used in the following
figures are derived from the modes of the mean shift density estimation in every
time step.
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Figure 6.2: Verification of jump action for joint-angle and geometric descriptors with
mean shift algorithm variance v = 15.
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Figure 6.3: Verification of run action for joint-angle and geometric descriptors with
mean shift algorithm variance v = 15.
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Figure 6.4: Verification of sit action for joint-angle and geometric descriptors with
mean shift algorithm variance v = 15.
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Figure 6.5: Verification of walk action for joint-angle and geometric descriptors with
mean shift algorithm variance v = 15.
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Figure 6.6: Verification of wave action for joint-angle and geometric descriptors with
mean shift algorithm variance v = 15.
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Figure 6.7: Verification of wave action for joint-angle and geometric descriptors with
mean shift algorithm variance v = 5.
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Each amplitude curve in Figure 6.2 to Figure 6.7 looks approximately as a straight
line. These is the expected behaviour for a correct implementation. Since the se-
quence is being compared with itself, the nearest neighbour of each frame descriptor
in the input sequence always matches its corresponding frame descriptor in the train-
ing sequence. Thus, one vote for the end of the action at tend is generated every time
step and the density of the votes increases linearly as more frames are processed.
It can be seen that the joint-angle descriptor gains better performance whereas the
geometric descriptor misses some matches due to quantization. The only exception
for such behaviour is present for the wave action. Here, the amplitude values remain
in zero for the majority of time steps and only exhibit a linear behaviour during a
short time interval in the case of the joint-angle descriptor. This behaviour can be
explained by the relatively big difference between the duration of a wave action with
respect to other actions. The shorter an action is, the smaller the variance around
the end time of the action becomes. It means that, the mean shift mode seeking
will not always find maximum amplitude values of every density function since the
algorithm only finds modes that correspond to an initially fixed variance value. If
the variance present in the data cannot be modelled with the variance value being
used by the algorithm, the amplitude value is simply set to zero. When the variance
is set to a smaller value, a straight line in the amplitude diagram is also obtained
for the wave action (see Figure 6.7).

Having verified the basic functionality of the framework, it is now possible to test
the performance.

6.2 Intra-class Variation

This test has the purpose of evaluating the recognition of single actions classes in
order to investigate how similar are all actions of the same type among themselves.
The more similar actions are, the better results are obtained with smaller training
data sets since the action can be represented with fewer samples.

For each action class, a training dictionary is created containing several samples
of only the action class being tested. One of the actions present in the training
dictionary is then used as input. As in Section 6.1, the maximum peak amplitude
at each time-step is recorded and plotted. Furthermore, the mean shift density
estimation for the last time step is shown in each experiment. This experiment
was performed for pairs of actions for the joint-angle descriptor without clustering,
joint-angle descriptor with clustering and geometric descriptor with clustering.

Figures 6.8, 6.9, and 6.10 depict the results of the intra-class variation experiments.
In general, each experiment shows that the maximum peak amplitude of the mean
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Figure 6.8: Intra class Experiment 1. Mean shift peak amplitudes of nine different
actions using the joint-angle descriptor without clustering. Walk actions (a). Jump
actions (b). Run actions: (c).



54

0

20

40

60

80

0 30 60 90 120 150

A
m

pl
itu

de

Frame Numer

Walk

(a)

0
30
60
90
120
150

0 50 100 150 200 250

A
m

pl
itu

de

Frame Numer

Jump

(b)

0

4

8

12

16

20

0 20 40 60 80 100

A
m

pl
itu

de

Frame Numer

Run

(c)

Figure 6.9: Intra-class Experiment 2. Mean shift peak amplitudes of nine different
actions using the joint-angle descriptor with clustering. Walk actions (a). Jump
actions (b). Run actions (c).
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Figure 6.10: Intra-class experiment 3. Mean shift peak amplitudes of nine different
actions using the geometric descriptor with clustering. Walk actions (a). Jump
actions (b). Run actions (c).
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shift increases along the time axis in the majority of the cases independently of the
descriptor used. However, one can notice, that two actions of the same class exhibit
a slightly different amplitude pattern. Such behaviour is normally expected since
the descriptors employed for representing the frames of two different actions of the
same class can significantly vary among themselves.

In the case of a ’run’ action, the geometric descriptor outperforms the join-angle
descriptor. This shows that in some cases, the geometric descriptor is capable of
achieving a better generalization over bigger variations of the test data with respect
to the training data. Another important advantage of the geometric descriptor is the
generally shorter time required for processing each frame of the input sequence. This
is partially explained by the relative simplicity of obtaining the geometric features.
As opposite to the joint-angles, the calculation of geometric features does not require
pose normalization since such features already express semantic relations between
joints that are point-view independent. Another time advantage of the geometric
descriptor is the reduced number of features that it normally has in comparison with
the joint-angle descriptor. Consequently, the dimensionality of the search for similar
poses is reduced, and thus the processing time becomes shorter.

6.3 Discrimination of Different Actions

Having evaluated recognition for individual actions, it is now necessary to find out
how well the framework performs when it is tested under more realistic conditions.
That is, when the training dictionary is composed by several different action classes
and the input sequences can represent any of those action classes contained in the
training data. In this case, an optimal performance of the framework requires that
a correct action classification can be clearly given for any input video sequence as
long as it represents one of the action classes given in the training data.

As in the previous tests, five action classes are evaluated: walk, run, jump, sit,
and wave. However, this time, several video sequences of the five action classes are
included in the dictionary. The maximum peak amplitudes of the density function
are shown over time for pairs of actions. This experiment was performed for the
joint-angle descriptor without clustering, joint-angle descriptor with clustering and
geometric descriptor with clustering.

A number of conclusions can be derived from Figures 6.11 to 6.25. In general, the
results for most of the cases show that actions can be discriminated. That shows,
based on the mean shift amplitude data, it is possible to clearly discriminate between
the action being performed and the other actions present in the training data set. A
thorough analysis of the amplitude data shows some particularities for certain cases.
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Figure 6.11: Mean shift peak amplitudes for ’walk’ (blue) using joint-angle descriptor
without clustering.

For example, in Figure 6.11, it can be observed that undesired amplitude levels ap-
pear. Having a closer look at Figure 6.11 unveils that the confusing wave action
is performed during the person is walking. This noise levels, which correspond to
actions different than the walk action, are higher when compared to the noise levels
in Figures 6.12 and 6.13 where a clustering for codebook generation is applied. This
statement is also valid for the jump action as well as for the sit action. Given that
the use of clustering achieves a better discrimination (bigger difference between the
amplitudes of the truth action and other actions), the SVM can more precisely clas-
sify an action. Another important remark can be made by comparing the joint-angle
and geometric descriptors. In particular, the true amplitudes of action pairs with
the same class label in Figures 6.13, 6.16, 6.19 appear more similar one to another
than in the case of joint-angle descriptor. As mentioned before, such capability of
generalization is one of the advantages of the geometric descriptor.
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Figure 6.12: Mean shift peak amplitudes for ’walk’ (blue) using joint-angle descriptor
with clustering.

6.4 Temporal Invariance of the Descriptors

Another important performance indicator of an action recognition framework is de-
fined by how well an action performed at different speeds can be recognized. In this
experiment, tests were performed for the joint-angle descriptor with clustering for
three different video sequences, each one containing several cycles of a walk action.
A cycle of a walk action being defined as two strides. In each video sequence, cycles
of the action were approximately of the same length, but the average cycle length
Cai between video sequences varied considerably. Figures 6.26 to 6.27 show the
results of this experiment. These figures depict the mean shift amplitude function
over time for each case at four different time steps. Additionally, the ground truth
of each action is shown as a blue box. Each box corresponds to the interval during
which the action is being performed.
The performed experiments visualized in Figures 6.26 to 6.28 show that the proposed
framework is capable to deal with action recognition at different temporal scales
given that a proper training data set is provided.
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Figure 6.13: Mean shift peak amplitudes for ’walk’ (blue) using geometric descriptor
with clustering.
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Figure 6.14: Mean shift peak amplitudes for ’jump’ (red) using joint-angle descriptor
without clustering.



60

0

5

10

15

20

25

30

35

40

45

50

55

60

65

0 25 50 75 100 125 150 175 200 225 250 275 300

A
m

pl
itu

de

Frame Numer

Figure 6.15: Mean shift peak amplitudes for ’jump’ (red) using joint-angle descriptor
with clustering.
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Figure 6.16: Mean shift peak amplitudes for ’jump’ (red) using geometric descriptor
with clustering.
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Figure 6.17: Mean shift peak amplitudes for ’run’ (purple) using joint-angle descrip-
tor without clustering.
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Figure 6.18: Mean shift peak amplitudes for ’run’ (purple) using joint-angle descrip-
tor with clustering.
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Figure 6.19: Mean shift peak amplitudes for ’run’ (purple) using geometric descriptor
with clustering.
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Figure 6.20: Mean shift peak amplitudes for ’sit’ (green) using joint-angle descriptor
without clustering.



63

0

5

10

15

20

0 25 50 75 100 125 150

A
m

pl
itu

de

Frame Numer

Figure 6.21: Mean shift peak amplitudes for ’sit’ (green) using joint-angle descriptor
with clustering.
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Figure 6.22: Mean shift peak amplitudes for ’sit’ (green) using geometric descriptor
with clustering.
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Figure 6.23: Mean shift peak amplitudes for ’wave’ (turquoise) using joint-angle
descriptor without clustering.
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Figure 6.24: Mean shift peak amplitudes for ’wave’ (turquoise) using joint-angle
descriptor with clustering.
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Figure 6.25: Mean shift peak amplitudes for ’wave’ (turquoise) using geometric
descriptor with clustering.
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(a) (b)

(c) (d)

Figure 6.26: Mean shift amplitude for a slow walk action at four different time
instants: t1 = 80, t2 = 160, t3 = 340, and t4 = 480. Average action cycle Ca1 ≈ 160.
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(c) (d)

Figure 6.27: Mean shift amplitude for a slow walk action at four different time
instants given in number of frames: t1 = 250, t2 = 600, t3 = 800, and t4 = 1100.
Average action cycle Ca1 ≈ 160 frames.
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Figure 6.28: Mean shift amplitude for a slow walk action at four different time
instants: t1 = 100, t2 = 240, t3 = 480, and t4 = 560. Average action cycle Ca1 ≈
160.



69

6.5 Robustness

In order to investigate the tolerance of the framework to noisy data, a robustness test
for each descriptor was performed. Initially, different video sequences were recorded
with the Microsoft Kinect depth sensor and used to create a training dictionary.
Subsequently, in Figure 6.29 a video sequence containing two sit actions was recorded
and used as the input. In (a) the joint-angle descriptor and in (b) the geometric
descriptor were applied. In that case – surprisingly compared to the used data above
– the joint-angle descriptor totally fails but the geometric descriptor provides a valid
result. Looking closer to that issue reveals that the data recorded with the Kinect
sensor is not as accurate as the data used above. That additionally leads to the
conclusion that the geometric descriptor can handle small noise with ease.

6.6 Real Time Evaluation

As a final experiment, the framework was tested using as input the real-time data
streams provided by the Kinect depth sensor. As observed in Figure 6.30, the sensor
delivers three different types of data streams. From these, the data stream containing
the skeleton coordinates is used to create a pose descriptor per frame.
With an approximate frequency of 30 poses per second, the total time interval re-
quired by all the framework stages was short enough to allow for real-time action
recognition. That means, the rendering of the skeleton appeared always fluently
and the action statements were given with the latency of about one second, due to
the evolution of the vote density, compare esp. Figure 5.5. The action recognition
was faster when the geometric descriptor was used and not too many samples in the
training were included.
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(a)

(b)

Figure 6.29: Robustness Experiment. An action recorded with the kinect depth
sensor was used as the input sequence. The sequence consisted of two cycles of a
sit action finishing at t = 170 and t = 450. The framework was trained with ’sit’,
’wave’, and ’walk’ actions. (a) and (b) show the results of the mean shift density
employing a joint-angle descriptor and a geometric descriptor respectively.



71

(a) (b)

(c) (d)

(e) (f)

Figure 6.30: Real time data from the Microsoft Kinect sensor. (a,b) color images,
(c,d) depth image, and (e,f) the estimated 3D pose of the person.
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Chapter 7

Summary

This thesis presented a real-time approach for automatic human action recognition
based on the Generalized Hough Transform . At the beginning, Chapter 2 briefly in-
troduced state of the art approaches that have been recently developed for automatic
action recognition. This gave a general overview of the main technical challenges
found in the action recognition field. Namely, two basic pillars were identified: the
selection of the features for representing an action and the respective classification
method used for assigning those features into specific action classes.
Chapter 3 described the descriptor and the Implicit Shape Model approach used in
the work by (Zepf, 2012) on which the framework developed in this thesis is based.
Having given those initial basics, Chapter 4 presented the extensions of the initial
framework that were included in this work. Particularly, the geometric descriptor
was introduced as an alternative to the joint-angle descriptor. Furthermore, the
RNN algorithm for descriptors clustering was explained.
The relevant details of the implementation were given in Chapter 5. Here, the
different stages that constitute the framework were explained. These are the data
acquisition, descriptor processing, voting, mean shift, and action classification stages.
Conclusively, Chapter 6 presented the different experiments performed on the ac-
tion recognition framework. Initially, the correctness of the implementation was
verified by testing video sequences of actions that were already present in the train-
ing data. Afterwards, experiments for detecting single actions were performed using
the joint-angle descriptor and the geometric descriptor. From the results of this
experiment, it can be concluded that the framework is capable of predicting the
end of an action after a few number of frames has been processed with either de-
scriptor, independently of whether the clustering is employed or not. However, the
processing of each frame using geometric descriptors was generally faster than us-
ing joint-angles descriptors. Subsequently, the discrimination of several actions was
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evaluated. In this experiment, the results showed promising results for the majority
of actions using three different methods: joint-angle descriptor without clustering,
geometric descriptor with clustering, and joint-angle descriptor with clustering. In
almost every case, it was possible to correctly identify the action being performed
and differentiate it from the other actions in the training set.
Experiments for the time invariance of the framework were also performed. They
showed that actions performed at considerably different speeds were also able to be
detected. This statement holds true as long as the training data set provided contains
at least one action performed at a similar speed as the action under evaluation.
Additional experiments were performed for assessing the robustness of the framework
considering real data from Microsoft Kinect sensor in real-time. To close the whole
pipeline a classifier is automatically learnet and applied.
The contribution of this thesis is the implementation of the action recognition system
in real-time, integration and evaluation of a new geometric descriptor, integration
and test of the Microsoft Kinect sensor for using own data, and closing the pipeline
with an automatically learnt classifier.
The time-invariance was demonstrated on training data with actions with different
speeds. Future work should focus on time normalization of the actions. Another
improvement is a descriptor which can be restricted to certain parts of the body
allowing an action-specific adaption.
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