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Abstract. Fuzzy metric temporal logic (FMTL) and situation graph
trees (SGTs) have been shown to be promising tools in high-level situa-
tion recognition. They generate semantic descriptions from numeric per-
ceptual data. FMTL and SGTs allow for sophisticated and universally
applicable rule-based expert systems. Dealing with incomplete data is
still a challenging task for rule-based systems. The FMTL/SGT system is
extended by interpolation and hallucination to become capable of incom-
plete data. Therefore, one analysis to the robustness of the FMTL/SGT
system in situation recognition is removing parts of the ground truth
input tracks. The recognition results are compared to ground truth for
situations such as “load object into car”. The results show that the pre-
sented approach is robust against incomplete data. The contribution of
this work is, first, an extension to the FMTL/SGT system to handle in-
complete data via interpolation and hallucination, second, a knowledge
base for recognizing vehicle-centered situations.

Keywords: rule-based expert system, fuzzy metric temporal logic, situation
graph trees, semantic video understanding

1 Introduction

High-level situation recognition is the process of generating semantic descriptions
from a scene observed through machine perception. First, video data needs to be
processed by computer vision to obtain corresponding tracks for people, vehicles,
and other objects of interest. Second, these tracks need to be processed by high-
level situation recognition to detect the occurrence of interesting situations. For
this contribution, we concentrate on deducing high-level situations as “loading
an object into a car” from tracking data in a surveillance context, as e.g. Figure
1 depicts.

High-level situation recognition should be able to handle any form of un-
certainty. This can be partial knowledge of the current state of the world, phe-
nomena which are not observed by our model, and noisy observations. One kind
of noisy observations is incomplete data from machine perception, in this case
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Fig. 1. Two scenes from the VIRAT video dataset [10]. Car park VIRAT S 000002
(left) and car park VIRAT S 000200 (right). Typical situations in this context are
getting into or getting out of a vehicle and loading or unloading an object.

video-based tracking. Data gaps can occur when objects are occluded, when ob-
jects move through areas without sensor coverage, or when machine perception
experiences technical problems. For this contribution, existing methods were ex-
tended to handle incomplete data.

This article is structured as follows: Section 2 provides a short overview of
related work in high-level situation recognition. Our own approach, the method-
ological improvements to handle incomplete data, and the particular SGT and
FMTL rules for a prototypical surveillance scenario are presented in Section 3.
Section 4 describes the evaluation and results. Section 5 provides a conclusion.

2 Related Work

A broad overview in situation recognition is given in the survey papers [1, 5, 11].
The whole field can be roughly divided into two main architectural strategies.
On the one hand, there are direct approaches working directly on videos. On
the other hand, there are the hierarchical approaches built of several layers. The
basic idea of using several layers is splitting up the whole recognition process into
specialized recognition methods. Usually, there are some methods performing
object detection and tracking, others are combining the gathered information
in a temporally and spatially limited context, and finally upon this information
the high-level situation recognition is performed. Hierarchical approaches are
divided into statistical methods often based on probabilistic graphical models
such as Bayesian networks or Markov models, syntactic approaches representing
actions trough symbols and combining them to situations with grammar-like
structures, and description-based approaches using formal languages such as
logic to describe situations. Usually, the latter rely on temporal and spatial
properties to describe situations [4].

SGTs were presented as knowledge representation for situation recognition
based on FMTL in [9]. [6, 7] extended the situation recognition framework to
concurrent multi-hypothesis inference and optimized the runtime performance
for real-time operation in several domains.
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3 Methods

The general framework that underlies the high-level situation recognition is the
layered model for cognitive vision systems initially described in [8]. FMTL is
a powerful logic which can deal with notions of fuzziness and time. Handling
fuzziness allows for handling both uncertainty and inherently vague concepts in
the inference process itself. In [2] FMTL and SGTs are applied to the traffic
domain and [3] applies them to human behavior. The advantages of using SGTs
are the integrated modeling of knowledge, defining the rules and the inference
algorithm in a precise formalism and the consolidation in one powerful framework
– the SGT-Editor. The internal representation of SGTs is in FMTL rules. The
inference algorithm for SGTs is programmed in FMTL, too. Thus, the whole
situation recognition is built upon formal FMTL. This allows precise and fast
inference about complex information of a particular scene.

3.1 Handling Incomplete Data

Interpolation of Input Data For a deduction at time t, data x(t) from interval
[t−∆t1, t+∆t2] is used. ∆t1 and ∆t2 are dependent on the temporal range of
the applied FMTL rules. If data is missing from t to t + ∆t0, each x(t′) with
t′ ∈ [t, t+∆t0] should be calculated as the average over all corresponding values
in Tp = [t−∆t1, t− 1] and Tf = [t+∆t0 + 1, t+∆t0 +∆t2] with ∆t1 and ∆t2
chosen freely:

x(t′) =
1

|Tp|+ |Tf |
(
∑

tp∈Tp

(wx(tp) · x(tp)) +
∑

tf∈Tf

(wx(tf ) · x(tf ))). (1)

The weights wx(tp) and wx(tf ) can be used to reflect a larger influence of Tp
or Tf when t′ is closer to the beginning or the end of [t, t + ∆t0] respectively.
This procedure works well for linear metric values, and radial values need to be
handled differently with radial metrics.

Hallucinating High-Level Evidence. When rule-based systems are getting
more complex they consequently have to deal with increasing challenges of noisy
and incomplete input data. The general drawbacks of such a system are when
trying to instantiate the preconditions of any situation scheme and all of the
rules can be satisfied except of a very few ones which leads to a discontinuation
of the situation recognition of the current path of inference.

To overcome this drawback we extended the situation recognition inference
algorithm presented in [7] to hallucinate missing evidence. If the predicted situa-
tion scheme cannot be instantiated due to missing evidence, the missing evidence
is hallucinated. That means, the algorithm creates satisfied dummy predicates
for the missing evidence so that the situation scheme can be instantiated. It is, of
course, internally known which situation schemes are hallucinated. And finally,
the situation graph traversal gets continued with the new hallucinated situation
scheme.
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3.2 Knowledge Base

Figure 2 depicts the SGT representing the knowledge for the situation recogni-
tion. The right specialization edge emerging from Root is not included in this
paper since it specializes for situations that are not evaluated in Section 4 like
people approaching each other, standing together, and walking together.

For a detailed description on traversing the SGT to recognize situations refer
to [7]. The traversal starts in the Root situation scheme and continues along the
left specialization edge emerging from Root. Then, the start situation scheme
PatientCar instantiates a car as the patient for the current agent. From there,
the situation schemes CarFar and CarNear can be reached through temporal
edges and so on.

The head of an FMTL rules activated by the SGT in Figure 2 is e.g.
HaveDistance(agent, patient, category). The body of this rule consists of
DistanceIs(agent, patient, distance)∧ AssociateDistance(distance, category).
DistanceIs(agent, patient, distance) calculates the Euclidian distance which is
then associated with distance categories using AssociateDistance(distance,
category) as described e.g. in Figure 7 in [2].

4 Evaluation

Experimental Setup We implemented and evaluated the proposed method
on videos with annotated ground truth data from the VIRAT video dataset, see
Figure 1. The VIRAT Video Dataset Release 1.0 was made publicly available
in 2011 and is presented in [10]. For three out of six places there exist ground
truth annotated files where each object or person of interest is annotated. Addi-
tionally, in a second file there are annotated semantically interesting situations
and all the participating agents in the environment of a car park. The annotated
vehicle-centered situations comprising persons, objects and cars are getting into
or getting out of a vehicle, opening or closing trunk, and loading or unloading
an object of a vehicle.

The provided ground truth annotated data of the VIRAT video dataset is
regarded as complete information. In this evaluation every experiment was per-
formed ten times with a probabilistic unique removal of data.

First, we extended the situation recognition system as mentioned in Section
3.1 to be capable of incomplete data. Second, we developed the lower level basic
knowledge which is represented in FMTL rules. This universally valid knowledge
is domain independent and does not need to be changed when a different domain
is considered. Third, the knowledge about the expected situations is encoded
in an SGT. Consequently, the specific SGT, see Figure 2, describes all of the
expected situations of a certain domain.

Results We choose the following six videos to evaluate on, due to the availability
of annotations and the occurrence of different situations. From scene 00 we
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PatientCar

GetPatient(agent,car)
IsCar(car)

NO ACTION PREDICATES

CarNear

BoxNearBox(agent,car)

NO ACTION PREDICATES

CarFar

HaveDistance(agent,car,notSmall)

NO ACTION PREDICATES

Root

Active(agent)

NO ACTION PREDICATES

PersonWithCar

HasSpeed(car,tinyOrZero)

NO ACTION PREDICATES

PersonEntersCar

Disappear(agent)

ViratOutput(agent,car,5)

PersonExitsCar

Appear(agent)

ViratOutput(agent,car,6)

ObjectWithCar

GetPatient(agent,object)

NO ACTION PREDICATES

UnloadObject

Appear(object)

ViratOutput(agent,car,object,2)

LoadObject

Disappear(object)

ViratOutput(agent,car,object,1)

IsObject(object)
BoxNearBox(object,agent)

Fig. 2. Part of the SGT representing the knowledge to detect the expected vehicle-
centered situations used in the evaluation. The basic structural element of an SGT
is a situation scheme which is identified by a unique name, a precondition, and a
postcondition both out of one or more FMTL predicates. An example is the “Root”
situation scheme with the precondition Active(agent) and without any postcondition.
A situation scheme can be a start resp. end situation which is marked with a small
box on the upper left resp. right of the situation scheme. Thin edges represent the
temporal structure of the situation schemes within a unit visualized with a thick box
called situation graph. Thick edges from a single situation scheme to a situation graph
model the conceptional refinement of a situation scheme. The resulting structure is a
hypergraph and is called SGT. In this figure the situation schemes PersonEntersCar,
PersonExitsCar, UnloadObject, and LoadObject raise as postcondition a message that
they could be instantiated with a distinct configuration of the variables.
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Fig. 3. The results of the unmodified, original scenarios of the six different videos of
the VIRAT dataset are visualized in terms of precision, recall, and f-score (upper left).
F-score of all evaluated videos with gap size of 5 seconds (upper right), precision (lower
left), and recall (lower right). The horizontal axis equals the removed data in percent.

selected sequence 02 (a), 03 (b), 04 (c), and 06 (d); from scene 02 we selected
segment 06 (e) of sequence 00 and segment 00 (f) of sequence 02.

The classification rates of the performed experiments on the six different
video sequences are shown in Figure 3 (upper left). The recall is throughout all
the six sequences equal to 1.0, which means, that the proposed method never
misses any interesting situation in the testset. The average precision is far from 1,
the f-score, of course, is slightly better. Some false positive classification results
cause the bad precision, but we argue that this is not as disappointing because
every single occurring situation was recognized.

Figure 3 depicts f-score (upper right), precision (lower left), and recall (lower
right) of all evaluated videos. The figures show that the proposed approach is
capable of handling incomplete data even if more than half of the data is missing.

Figure 4 shows the ROC-curves of video (d) for a gap size of 5 seconds (left).
The false positive rate slightly increases for larger amounts of missing data and



7

the larger the gaps, the true positive rate decreases slightly. The same evaluation
without data interpolation and hallucinating performs worse (right).

Figure 5 (left) consists of three different test configurations: gap sizes of 1,
3, and 5 seconds in video (d). Gap sizes of 1 and 3 perform slightly similar;
larger gaps of size 5 result in a roughly worse result. Figure 5 (right) shows f-
score of video (d) with gap size 5 including the error bars of the three standard
deviations.
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Fig. 4. For video (d) with gap size five seconds the ROC-curves are shown (left).
True positive rate on vertical axis; false positive rate on horizontal axis. Without data
interpolation and hallucinating (right).

5 Conclusion

We have presented a cognitive vision system that can deal with incomplete data
in the application of situation recognition in a video surveillance setup. The main
ideas to deal with incomplete data in a rule-based expert system are on the lower
tier the interpolation of input data and its uncertainty and on the upper tier the
extension of the situation recognition inference algorithm. These two extensions
allows our system both to deal with ordinary incomplete data and to handle
high-level incomplete data such as occlusions. The contribution of this work is
the extension of the SGT-Editor and the formal situation recognition inference
algorithm to handle incomplete data. As well as developing a knowledge base for
recognizing vehicle-centered situations and the broad evaluation of the VIRAT
video dataset on a high semantic level. To the best of our knowledge nobody has
evaluated the VIRAT video dataset on a high semantic level before.

Acknowledgements. The authors would like to thank Yvonne Fischer and Wolf-
gang Hübner for fruitful discussions and for their contributions leading to the
success of this work.
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Fig. 5. Video (d) with gap sizes of 1, 3, and 5 seconds (left). F-score (right) of video
(d) with gap size 5 including the error bars of the three standard deviations.
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