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Abstract. Master-slave camera systems – consisting of a wide-angle
master camera and an actively controllable pan-tilt-zoom camera – pro-
vide a large field of view, allowing monitoring the full situational context,
as well as a narrow field of view, to capture sufficient details. Uncon-
strained calibration of such a system is a non-trivial task. In this paper a
fully automatic and adaptive configuration method is proposed. It learns
a motor map relating image coordinates from the master view to motor
commands of the slave camera. First, a rough initial configuration is es-
timated by registering images from the slave camera onto the master
view. In order to be operational in poorly textured environments, like
hallways, the motor map is online refined by utilizing correspondences
originating from moving objects. The accuracy is evaluated in different
environments, as well as in the visual and the infrared spectrum. The
overall accuracy is significantly improved by the online refinement.

Keywords: Master-slave camera system. Self calibration. Semi-stationary
camera system. Video surveillance. Weak calibration.

1 Introduction

In content-based video analysis the goal is a holistic understanding of an ob-
served scene. We assume a surveillance scenario which means that any situation
of an observed agent of interest – an object, a person, a vehicle, etc. – is automat-
ically recognized and logged. If a situation is considered dangerous or unusual
an automated warning should be raised in order to assist the human operator.
Being visually supported by the surveillance system, the human operator is able
to pay attention on specific predefined situations of interest.

Master-slave camera systems are a practical trade-off in order to overcome
limitations of cameras with a single focus. They provide a large field of view
(FOV), allowing to monitor the full situational context, as well as a narrow
FOV, used to capture sufficient details of individual objects, at the same time.
A typical setup consists of a wide-angle master camera with a fixed focus and
an actively controllable pan-tilt-zoom (PTZ) camera.

Figure 1 depicts the camera setup and the envisioned application scenario
in which detailed information about people, interactions, etc. are automatically
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(a) (b)

Fig. 1. Application scenario and camera setup. The master camera captures a scene
with automatically increasing the information in potentially interesting areas. (a) In
this image a master camera detects several unspecified objects, while close-up views
from the PTZ-camera allow, e.g. the identification of a car (red) or person (orange) or
what the persons are doing (blue). (b) The master-slave camera system used in this
work consists of an Axis P5534, Q1755, and Q1922.

captured by a detailed close-up view. Close-up views are required for more de-
tailed detection and identification of objects. As mentioned in [9] there is a lower
bound of the size of detecting a person in an image. Other demands for close-
ups might stem from pose reconstruction [6] for action recognition of persons.
Face detection for person identification can also be applied [4]. The system is
intended to support a rule-based inference machine [20], which fuses all the men-
tioned methods above and performs semantic feedback to the active controllable
cameras to even further specialize the situations of interest in a scene.

This article is structured as follows: Section 2 provides an overview of related
work on multi-camera systems and their configuration. Our proposed system and
the whole processing pipeline are presented in Section 3. Section 4 gives a com-
prehensive evaluation and explains the online refinement. Section 5 provides a
conclusion. The contribution of this article is (a) a comprehensive vision sys-
tem working under low constraints (b) in different spectral ranges and (c) the
automatic online refinement followed by a comprehensive evaluation.

2 Related Work

In the literature active multi-camera systems which were mainly well-defined and
calibrated are addressed in [12]. Here, we mainly address the problem of setting
up multi-camera systems in unconstrained environments, without extrinsic cal-
ibration and without precise knowledge about the geometry of the cameras.
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Multi-camera systems. There can be differentiated between different kinds
of multi-camera systems with active components. In [4] several PTZ-cameras
cooperate in a scene observed by one master camera. Several master cameras
and several PTZ-cameras are investigated in [23]. In an indoor environment,
such as a smart control room, there are dozens of cameras among them one with
a fisheye objective and two PTZ-cameras [13]. Another possibility instead of a
fix master camera is the use of only PTZ-cameras with one of them operating
as master camera [8].

Motivation and organization of camera control. In addition to different
hardware configurations, there is a clear distinction in terms of the motivation
and organization of the purpose and control of a multi-camera system. One ap-
plication of a multi-camera system is to track objects over several cooperative
cameras [10]. Another application is to increase the information of certain ob-
jects, such as number plate recognition [24] or person identification [27]. In [4]
both methods, multi-camera object tracking and the generation of close-up views
are combined in one system.

According to Bellotto et. al. [4] the organization of multi-camera control can
be divided in three parts: First, there is the Picture Domain Camera Control,
which means that the control of the cameras is only based on low-level infor-
mation from 2D images. Second, there is the Scene Domain Camera Control
making use of 3D scene models etc. And finally, there is the Conceptual Level
Camera Control using extracted higher-level information to control the cameras
intelligently.

Configuration and calibration. In a multi-camera system the mapping from
a point in one camera to the corresponding point in the other camera is essential.
For that the calibration of the camera system is needed. Calibration methods
can be divided into weak and strong calibration methods.

Strong calibration means that both internal and external parameters of all
cameras have to be determined. This allows determining the correspondences
of a point in a 2D image to another point in a 2D image via 3D world coordi-
nates. The calibration can be done for every camera [25], or as a pair-wise stereo
setup [11]. In outdoor scenarios often georeferences are added [23]. Compensat-
ing the deficiencies of low-budget cameras, Jain et. al. [14] use an extended set
of calibration equations, in contrast to [22] where a simplified camera model is
used. Other methods need manual assistance, such as hand-drawn gridlines, or
light-points [7].

Weak calibration avoids the mapping from one image to the other via 3D
world-coordinates. Instead a lookup-table (LUT) with the corresponding 2D im-
age coordinates and the PTZ motor coordinates is generated. Early approaches
(e.g. [28]) make use of manually selected correspondences, such as annotated
persons [18]. The interpolation of sparse LUTs can be performed e.g. geomet-
rically [16] or with splines [1]. Other methods use specific properties of certain
scenes as e.g. lane markings or vanishing points.
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Methods based on local image features, e.g. [16], avoid scene dependent spe-
cialties and are independent from what is seen in an image. As the FOV of the
PTZ-camera is normally only a small fraction of the master camera’s FOV, sev-
eral approaches generate a mosaic image of images from the PTZ-camera while
storing the PTZ coordinates. Wu and Radke [26] do not save the mosaic image,
instead only the features are stored.

Here we propose a method for automatically calibrating the master-slave
camera system, see Figure 1. The proposed method combines several advantages
of the above mentioned approaches into one configuration method. The method
performs a weak calibration under the constraint that both cameras have a
similar view point. In general no further assumptions about the camera geometry
are made. Instead of mosaicking, a sparse initial LUT is interpolated using linear
regression in order to calculate the mapping from master image coordinates to
the motor space of the PTZ camera. As it is not possible to find correspondences
in poorly textured regions, therefore, an online refinement using temporarily
available objects during operation in these areas to incrementally improve the
LUT is proposed. Online refinement turns out to be an essential processing step
in most real world scenarios.

3 Methods

In the following section the whole processing pipeline of our proposed master-
slave camera system is described in detail.
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(pani, tilti, zoomi)

i = 1, . . . , n

1

n

configuration path

(a)

Feature detection

pan, tilt, zoom

u, v

NNDR
Homography

(b)

lineare regression

+β3xy + β4x
2 + β5y

2

resp. barycentric
coordinates

pan = β0 + β1x + β2y

(c)

Motormap

(d)

Fig. 2. The overall processing pipeline, used to automatically determine the motor
map. (a) A rough initial set of correspondences is determined. (b) The process samples
a mapping between the image coordinates (u, v) of the master camera and the motor
space of the PTZ camera. (c) A linear regression resp. Barycentric coordinates are used
to generate a dense LUT. (d) Visualization of the learned dense motormap (rounded
to integers and alternately colored).

3.1 Determining Correspondences Between Uncalibrated Cameras

Local image features sampled around view invariant interest points have been
proven to be an efficient tool in determining corresspondences without additional



5

constraints. For a comprehensive review on local features see [15, 17]; particularly
due to their efficient runtime complexity, we decided to use SURF features [2],
although the proposed method is not limited to a specific feature type. In order
to compensate stronger deviations in view point, our method can also be used
with affine invariant features [17, 19], or features adapted to the source image
[21]. Despite estimating the internal camera parameters no further preprocessing,
image correction, photometric correction, or spectral adaption is required.
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Fig. 3. (a) Visualization of detecting features in master and slave image, matching cor-
responding features, and estimating the homography. (b) Verifying probably unuseful
homographies (upper) and only allowing probably good homographies (lower).

The initialization and matching of the processing pipeline are shown in Figure
2. To start the configuration a rough initial set of correspondences is determined.
Thus, the PTZ-camera starts moving in a spiral-like pattern (a) in order to cover
its full viewing range. Subsequently, in each correspondences step the features are
extracted, matched, and a homography is estimated (b). For feature matching we
avoid using fixed thresholds or simple Nearest Neighbor Search. Instead Nearest
Neighbor Distance Ratio is used, as it performs best in our setups [17]. Finally,
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the homography between the two views is computed from the correspondences,
see Figure 3 (a).

To reject ‘wrong’ homographies, see Figure 3 (b), we normalize the trans-

formation matrix Hsm according to detH ′sm = 1: H ′sm = Hsm ∗ sgn(detHsm)
3
√
|detHsm|

, see

also [3]. H ′sm ∈ SL3(R) thus, we can apply thresholds to avoid outliers, in our
case: −5,0 < h′11 < 5,0, −5,0 < h′22 < 5,0, 0,55 < h′33 < 2,5.

3.2 Mapping Image Coordinates to Motor Space

The adaptation process described so far generates a sparse mapping between
coordinates in the master image and the motor space of the PTZ camera, see
Figure 4. In order to be applicable a dense mapping has to be estimated from the
sparse LUT. In general a bijective function is desired, but due to inaccuracies in
the motor control of the PTZ-camera, the mapping is only injective.

Minimizing the error over different types of polynoms we get

pan = ap0 + ap1 ∗ x + ap2 ∗ y + ap3 ∗ x ∗ y + ap4 ∗ x2 + ap5 ∗ y2.

With (p1 · · · pn)
T

= Xap+εp and X according to the chosen polynom, the least

square estimate is âp = (XTX)−1XT (p1 · · · pn)
T

= X+ (p1 · · · pn)
T

. The same
procedure for tilt. To assure reliable results RANSAC is applied in this step. A
prototypical visualization of the initial and dense LUT is shown in Figure 2 (c).

(a)

PTZ camera

Master
d camera

(b)

Fig. 4. (a) Registering the PTZ view onto the master image. This includes the sparse
mapping. (zoom fixed). (b) Evaluating the error d (the distance of the ground truth
PTZ motor coordinates and the actual PTZ coordinates) of the learned master-slave
configuration.

3.3 Person Detection and Close-up Image Acquisition

After having learned a dense LUT in the previous section the master-slave cam-
era system is able to communicate between the different cameras. We can differ-
entiate the image processing into the master-camera’s part and the slave part.
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An elaborated image processing loop starts with background subtraction and
blob detection to identify potentially interesting situations.

Having gathered a close-up image with the slave camera, further fine-grained
image processing methods are applied, such as person identification, face de-
tection, and object detection. In addition to it human action recognition and
high-level situation recognition are applied, too. We will not further detail those
methods, as we see them as generic building blocks for the work presented here.

4 Evaluation

As the proposed system operates in a closed control loop, no offline data can be
used for evaluation. Therefore, we quantitatively evaluated the performance of
the system in different application domains. To evaluate the accuracy more than
hundreds of markers were placed all over the FOV of the master camera, see
Figure 4 (b). For every marker location the PTZ is moved to a position where
the marker is centered in the PTZ’s view. This procedure is done manually,
in order to achieve ground truth data. Next, the procedure is repeated, using
the automated PTZ control. The accuracy is measured in terms of the angular
deviation in the position of the PTZ camera.

Robustness with respect to the application domain. We evaluated the
proposed system in different domains, see Figure 5. The comprehensive evalua-
tion reveals the specific challenges in each domain.

(a) (b) (c)

(d) (e) (f)

Fig. 5. The proposed system was evaluated in different domains. In a human-like
surveillance scenario (a,d), in an wide-scene surveillance scenario (b,c), in a perimeter
protection scenario at night (e), and indoors (f).

Figure 6 summarizes results, measured in exemplary task domains, depicted
in Figure 5. Over hundred markers are placed in the FOV of the master camera.
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For each marker the accuracy of the dense mapping is evaluated, see Figure 4
(b). In Figure 6 (a) resp. (b) the angular errors of pan resp. tilt of the PTZ
camera are visualized (star). The x-axis are the pixels in horizontal (a) resp.
vertical (b) direction. Thus, in the lower left of the FOV the error is larger than
elsewhere. Comparing to Figure 4 (a), no correspondences could be found in that
area of the scene.
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Fig. 6. Evaluation of the accuracy of pan (left) and tilt (right) in scenario Figure 5 (b)
with the initial learned LUT (star) and the automatically online refined LUT (plus).

Incremental online refinement. Having evaluated the proposed system in
the above domains reveals a weak point: In poorly texture regions it is not
possible to establish sufficient corresspondeces. Therefore, the dense mapping
has to be interpolated over large regions, resulting in an increasingly inaccurate
PTZ control. That is a main drawback in the proposed system, as in that case,
e.g., it is not applicable in the domains in Figure 5.

In order to overcome this limitation, we use the sparsely sampled FOV as
an initial estimate and refine it using correspondences originating from moving
objects. In typical scenes these are persons walking around, bikes and cars mov-
ing around. The idea is to use the temporal occurrence of persons or objects in
low-textured areas to gather further correspondences for the sparse LUT and to
refine the dense LUT incrementally and online.

In Figure 7 (a) a triangulation of the initial LUT is shown. In (b) it is
extended by additional values gathered during a short time of operation. In
Figure 6 the automatically refined LUT is evaluated again (plus). As a result,
the error could be decreased by a factor of 5.

5 Conclusion

In this paper we have shown a semi-stationary master-slave camera system which
is capable of self-configuration under non-cooperative low textured conditions.
The effectiveness of the proposed system has been shown in different scenarios
over time. Increasing the amount of cameras should include a georeferencing
resulting in a global cover map. Further work include the extension of modali-
ties e.g. [5] and the integration into a situation understanding framework [20],
including high-level information inference as semantic feedback for lower level
processes, c.f. first work on high-level semantic feedback is presented in [4].
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(a) (b)

Fig. 7. Triangulation of the initial learned LUT (a); refined by additonally online
found correspondences (b). The triangulation is used alternatively for interpolation
with Barycentric coordinates instead of linear regresssion.
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