
Journal of Ambient Intelligence and Smart Environments 6 (2014) 623–649 623
DOI 10.3233/AIS-140290
IOS Press

Automatic understanding of group behavior
using fuzzy temporal logic

Joris IJsselmuiden a,*, David Münch a, Ann-Kristin Grosselfinger a,
Michael Arens a and Rainer Stiefelhagen b

a Fraunhofer IOSB, Fraunhoferstraße 1, 76131, Karlsruhe, Germany
E-mail: joris.ijsselmuiden@wur.nl, {david.muench,ann-kristin.grosselfinger,michael.arens}@iosb.fraunhofer.de
Phone: 0031 317 481258, Fax: 0031 317 484819
b Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Straße 3, 76131
Karlsruhe, Germany
E-mail: rainer.stiefelhagen@kit.edu

Abstract. Automatic behavior understanding refers to the generation of situation descriptions from machine perception. World
models created through machine perception can be used by a reasoning engine to deduce knowledge about the observed scene.
For this study, the required machine perception is annotated, allowing us to focus on the reasoning problem. The applied reason-
ing engine is based on fuzzy metric temporal logic and situation graph trees. It is evaluated in a case study on automatic behavior
report generation for staff training purposes in crisis response control rooms. The idea is to use automatically generated reports
for multimedia retrieval to increase the effectiveness of learning from recorded staff exercises. To achieve automatic report gen-
eration, various group situations are deduced from annotated person tracks, object information, and annotated information about
gestures, body pose, and speech activity. The contribution of this paper consists of improvements to the existing knowledge base
that models the group situations, and a quantitative evaluation using a substantial set of self-developed data and ground-truth.
We also describe recent improvements to the self-developed software tools for annotating and visualizing data, ground-truth, and
results.

Keywords: Automatic behavior understanding, group behavior, fuzzy metric temporal logic, situation graph trees

1. Introduction

Automatic behavior understanding, or the genera-
tion of situation descriptions from multimodal ma-
chine perception observing multiple objects is an un-
solved problem, and the encompassing research field
of high-level reasoning still contains many challenges.
Reasoning methods suffer from problems stemming
from the machine perception they depend on, but
as machine perception progresses and the perceived
world gets more complex, e.g. in research areas such as
smart homes, smart work environments, smart cities,
and the internet of things, the need for powerful rea-
soning methods becomes apparent.

*Corresponding author.

This is the motivation of our work. Building on [29],
we are taking steps toward general purpose, domain
independent reasoning methods for automatic behav-
ior understanding. In order to keep the focus on high-
level reasoning, hypothetical machine perception out-
puts are annotated based on real audiovisual data, us-
ing a self-developed data annotation tool. This ap-
proach allows us to perform targeted evaluations of
the reasoning methods only, as opposed to most other
studies that combine perception and reasoning. It is of-
ten difficult to perform a targeted error analysis and
compare results, when reasoning and perception are
evaluated as a single system.

Audiovisual data was recorded during a fire brigade
staff exercise. The data was annotated with hypotheti-
cal machine perception outputs, forming the input for

1876-1364/14/$27.50 c© 2014 – IOS Press and the authors. All rights reserved



624 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

fully automatic reasoning methods. These are based
on fuzzy metric temporal logic (FMTL) and situation
graph trees (SGTs) and model group situations that oc-
cur during staff exercises. Their output consists of sit-
uation descriptions which are compared to annotated
ground-truth to evaluate performance. This work rep-
resents a step along the way toward a real-time system
containing various machine perception components in-
stead of annotated hypothetical machine perception.
Ultimately, such a system should be applied to a va-
riety of application domains, having embodiment and
action generation as well as synchronous real-time vi-
sualizations of sensor data, machine perception, and
situation descriptions.

Contribution In [29], fuzzy metric temporal logic
and situation graph trees (FMTL and SGTs) were ap-
plied to automatic behavior understanding in smart
work environments for the first time. That study com-
pleted several steps toward an integrated development
toolkit for such purposes: a new dataset, new software
tools for data analysis and annotation, and a unique
case study with a large amount of perception modali-
ties and objects. Furthermore, the study contributed a
new FMTL/SGT knowledge base for this case study
that is also applicable to other domains, as well as the
first experimental results for the case study. It also con-
tained a discussion on how to handle imperfect input
data using FMTL and SGTs.

In this paper, we extend the work presented in [29]
with the following contributions. First, the knowledge
base that models the group situations is extended and
improved: based on our previous work presented in
[29,42], a variety of new and improved FMTL rules
have been developed, and we introduce a new set of
SGTs that use them. Second, a quantitative evaluation
of the system and its current results is performed, us-
ing a considerably larger and more sophisticated set of
self-developed data and ground-truth than in [29]. Fur-
thermore, we describe the self-developed dataset and
software tools that are used to perform the evaluation.
New features as compared to [29] include bounding
box visualization of ground-truth and results and more
flexible ground-truth annotation functionality.

Case study scenario The application we focus on is
automatic behavior report generation for staff training
purposes in crisis response control rooms. The pre-
sented case study is situated at the State Fire Service
Institute North Rhine-Westphalia, during one of their
staff exercises for crisis response control room opera-
tions (Fig. 1). Such exercises consist of a role playing

Fig. 1. Staff exercise at the State Fire Service Institute North
Rhine-Westphalia. Several situations we aim to recognize are visi-
ble here: conversation, analyzing a document together, editing a dis-
play.

setup where some participants take on the roles of con-
trol room staff while others are concerned with sim-
ulating field units, crisis dynamics, distress calls, and
radio communications. For this particular exercise, the
subject was a collision between a passenger train and
a cargo train carrying hazardous material.

As described in more detail in [29], such control
room operations follow strict procedures and the staff
members have predefined roles. The typical workflow
(corresponding to the recorded audiovisual data) con-
sists of periodic cycles of briefings and dynamic con-
trol room operations. The briefings contain multiple
phases, each lead by one of the first officers that is
in charge of a specific functional area. During the
dynamic operations between the briefings, the staff
members scatter across the room, attending to their
displays, documents, and messages. Groups are con-
stantly forming and breaking, and there is a lot of dis-
cussion going on. The knowledge base presented in
this paper aims to recognize the group behavior during
dynamic control room operations.

In order to automatically generate behavior reports
in this setting, the different types of group formations,
person-person interactions and person-object interac-
tions need to be modeled and recognized. First, the
static and dynamic properties of the persons and ob-
jects in the room need to be perceived using machine
perception. In our case, hypothetical machine percep-
tion outputs are annotated instead. Second, these prop-
erties need to be analyzed by a reasoning engine to
generate the behavior reports. If our machine per-
ception components can perceive (or annotations are
provided for) the identity, position, orientation, and
speech activity of the staff members over time, and the



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 625

state of the objects in the room, the reasoning engine
can automatically generate corresponding descriptions
and visualizations of group formations and interaction
patterns, i.e. of who is doing what with whom, using
which support tools. An example of such an automati-
cally generated description could be: “First officers S1
and S2 are editing the overview map together.”

In today’s staff exercises, individual and task ori-
ented feedback is hard to come by and is hence of-
ten neglected. This is mainly because it is imprac-
tical and time-consuming to obtain, given the avail-
able tools. Automatically generated behavior reports
can improve this situation. In particular, they can be
used to automatically or semi-automatically assess the
performance of the individual participants: How close
did they follow standard operating procedures? Who
should have been part of which group? How long did
it take them to complete specific tasks? Which bottle-
necks have occurred? Which available resources were
left idle? When combined with visualizations, audiovi-
sual recordings, and trails of developments in the cri-
sis response software that is being used (field unit sta-
tus, crisis dynamics, and other context information),
such a system could provide a rich information source
for feedback and learning, conveniently searchable for
specific situations. The presented case study is of in-
terest because of its uniqueness and its large amount of
perception modalities and objects.

Other application domains The applied reasoning
methods are domain independent as they are only con-
nected to underlying machine perception (or annota-
tions) through a generic symbolic interface. The ap-
plied annotation process is also flexible and applica-
ble to other application domains. Because the reason-
ing methods can use any combination of machine per-
ception components, such as human pose estimation,
speech recognition, vehicle tracking, and monitoring
of activities in cyberspace, the range of possible appli-
cation domains is wide: multimedia retrieval, robotics,
smart homes, ambient assisted living, smart work en-
vironments, intelligent user interfaces, smart cities, the
internet of things, indoor and outdoor surveillance, air
traffic control, decision support for military and civil
security, and more. Furthermore, in a complex system
of systems, the applied reasoning methods can facili-
tate camera control, sensor deployment planning, pre-
diction, information exchange between system com-
ponents, and top-down knowledge for machine per-
ception components to guide their search and improve
their outputs.

Some particularly relevant applications can be found
in the area of partially automated biological and psy-
chological research. Machine perception and subse-
quent automated reasoning about the observed behav-
ior of humans and animals can substantially improve
the efficiency and reliability of experiments in behav-
ioral science. On a related note, these methods can be
used in sports analysis to automatically classify game
situations from tracking data. This could allow seman-
tic multimedia retrieval for improved training proce-
dures and semantically guided media consumption.

Outline After Section 2, related work, Section 3 ex-
plains the applied methods, i.e. the developed annota-
tion process as well as the automatic reasoning meth-
ods. The evaluation and experimental results are pre-
sented in Section 4. Finally, Section 5 provides a con-
clusion and ideas for further research.

2. Related work

The surveys [1,35,57,60,65] and the books [5,21,23]
provide an overview over the research field around
automatic behavior understanding. Single-layered ap-
proaches operate directly on sensor data, whereas hi-
erarchical approaches divide the problem into multiple
layers: one or more layers of machine perception with
one or more layers of reasoning above them. At least
three types of hierarchical approaches exist: statistical,
syntactic, and description-based approaches.

Statistical, syntactic, or description-based Statistical
approaches use probabilistic graphical models such
as hidden Markov models or dynamic Bayesian net-
works to derive situation likelihoods [13,17,33,49,53].
In [66], a two-layered hidden Markov model is used
to classify group situations in meetings. The first layer
uses audio and video features to model person activi-
ties and the second layer combines them to group situ-
ations. In [20], group situations are detected using dy-
namic probabilistic networks.

Syntactic approaches combine atomic events into
complex situations using formal (stochastic) gram-
mars, mapping spatiotemporal changes in image se-
quences to events for instance [3,19,30,32]. Descrip-
tion-based methods employ knowledge about spatial,
temporal, and abstract properties, in the form of var-
ious logic languages and related modeling techniques
[16,25,46,59,63]. After the development of interval
temporal logic [2] in which a successful axiomatiza-
tion of time periods was introduced, it became feasi-
ble to model situations and actions in terms of tempo-



626 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

ral logic. The hierarchical logic approach for example
[50], combines interval temporal logic with event logic
to analyze football games. Limited first order logic is
used in [61] to combine several sub-events that sat-
isfy predefined temporal and spatial constraints con-
stituting a situation. Statistical and description-based
approaches are combined in Markov logic networks
by [31,39,47,51,56]. Here, weighted logic rules form
the input for Markov logic networks, allowing this ap-
proach to handle uncertainty in the input data appropri-
ately. In [10], evidence is aggregated in Bayesian com-
positional hierarchies. The required rules are automat-
ically generated from ontologies.

Ambient intelligence and smart environments From
the community around ambient intelligence and smart
environments, we draw inspiration from studies such
as [11,24,38,44,52,54,58]. In [6], frequent relation-
ships between actions are discovered from a collec-
tion of sensor data and the user is able to fine-tune the
system. In [48], a framework is introduced for mod-
eling intelligent environments. It is based on fuzzy
transfer learning, allowing the transfer of learned mod-
els across different environments. This system predicts
temperature development to allow for proactive con-
trol. A formal framework based on multi-valued tem-
poral propositional logic is proposed in [37]. Simi-
larly, bigraphs are introduced for the description, de-
sign, and analysis of intelligent environments in [27].
Context lattices are introduced in [64], allowing the in-
clusion of semantic information about the nature and
relationships between sensor data and observed activ-
ities. The study presented in [45] uses a combination
of first-order logic, fuzzy logic, and temporal logic ex-
emplified in a military application. Markov logic net-
works are applied to the recognition of activities of
daily living in [12], without the use of cameras or
wearable sensors. In [34], a training-free method is
introduced that generates probabilistic inference sys-
tems from causal models for human behavior. A goal-
directed human activity computing model that captures
the semantic relations between different atomic activ-
ities is presented in [62]. Studies about crisis manage-
ment and training can be found in [7,36,55].

Fuzzy metric temporal logic, situation graph trees
Our own hierarchical description-based approach to
automatic behavior understanding uses fuzzy met-
ric temporal logic (FMTL) combined with situation
graph trees (SGTs). These methods were previously
applied to the traffic domain in [4,18,43] and to
surveillance/human behavior in [8,14,15,22,40–42].

In [9,26], similar methods are applied to robot control.
Furthermore, this paper builds upon previous work
presented in [29] as well as some earlier efforts pre-
sented in [28]. Over the years, the FMTL/SGT meth-
ods have been incrementally improved while adhering
to their validity demonstrated in [4,18,22,40]. This pa-
per’s contribution (see Section 1) mainly consists of
new FMTL/SGT models and their quantitative evalua-
tion rather than new reasoning methods. The approach
will be explained in some detail under Section 3.2.

Note that the models we use for representation and
reasoning are based on expert knowledge rather than
learned from training data. Compared to other ap-
proaches, expert-knowledge-based representation and
reasoning in FMTL and SGTs is intuitive and flexible.
The clear boundary between machine perception and
reasoning makes it easier to improve one without the
other. Furthermore, deductions are understandable by
humans and completely provable, and existing FMTL
rules and SGTs can be adapted to new settings with
relatively little effort. The ability for humans to un-
derstand the reasoning process is essential to the pre-
sented case study. FMTL/SGT expert systems are suit-
able for knowledge intensive problems with heteroge-
neous search spaces such as the one presented here.

3. Methods

In Section 3.1, the three different phases of the anno-
tation process are explained. Section 3.2 presents the
reasoning engine, from the applied methods to the spe-
cific FMTL rules and SGTs that are used for the eval-
uation in Section 4.

3.1. Annotation process

The annotation process consists of three parts:
recording audiovisual data, annotating the correspond-
ing hypothetical machine perception outputs (data an-
notations), and annotating the ground-truth for the rea-
soning engine’s evaluation (ground-truth annotations).
The data annotations consist of person tracks, orienta-
tions, gestures, speech, and pose information as they
might be generated by a hypothetical set of machine
perception components. The ground-truth annotations
are semantic situation descriptions that describe the
observed scene.

3.1.1. Audiovisual recordings
The audiovisual data required for the annotation

process was gathered at the State Fire Service Institute



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 627

Fig. 2. Images recorded at the fire brigade staff exercise and used in the annotation process (containing views from all five cameras). Such images
are sampled from the raw video data at 1 fps.

North Rhine-Westphalia, during one of their staff exer-
cises for crisis response control room operations (see
Fig. 1). Five cameras were used to record the six hour
long staff exercise, providing complete and redundant
video coverage of the control room. Four microphones
distributed across the room were used to provide au-
dio coverage. After the recordings, the video footage
was sampled at 1 fps, yielding the five-pane images
exemplified by Fig. 2. These images, along with the
recorded audio tracks, form the input for the data an-
notation process described below. Computer vision al-
gorithms (especially ones with tracking) could benefit
from higher sampling rates, but we use manual anno-
tations. Providing images with 1 fps proved to be suf-
ficient for human annotators, and the events we cur-
rently aim to recognize do not have fast dynamics.
Hence, an image sampling rate of 1 fps is sufficient for
our current purposes. Higher sampling rates can be ob-
tained with corresponding annotation effort, or with-
out much effort by interpolating the hypothetical ma-
chine perception outputs that were already annotated
with 1 fps.

3.1.2. Data annotations
As input for the reasoning engine, hypothetical ma-

chine perception outputs are annotated using a dedi-
cated annotation tool. This annotated data is referred to
as hypothetical machine perception because it mimics
a hypothetical set of machine perception components
that could be installed in the environment to feed the
reasoning engine.

From the audiovisual footage, two four minute sec-
tions and two ten minute sections were selected for an-
notation. The sections were selected to include data for

each phase observed in the control room workflow and
the transitions between them (see Section 1): briefings
(consisting of multiple phases) as well as dynamic con-
trol room operations. The selected sections were taken
from the first 1.5 hours of the exercise, because that
part is the most eventful and it contains some unique
situations. Currently, we focus on recognizing group
behavior during the dynamic phases. For each second
within these 28 minutes of audiovisual data, the rea-
soning engine needs a symbolic representation as input
(hypothetical machine perception). To achieve this, a
data annotation tool was developed using Python with
Qt bindings. Figure 3 shows a screenshot of this tool,
displaying a symbolic representation of the audiovi-
sual data recorded during the staff exercise.

The video footage contains all the information we
needed to annotate the symbolic representation, ex-
cept for the participants’ speech activity and some use-
ful auditory context information about the operations
in the control room, which are provided by the audio
footage. The annotator analyzes the images and listens
to the audio tracks while manipulating the modeled
persons and objects in the bird’s eye view of the data
annotation tool. Using mouse interaction, each person
can be moved and rotated, and their body pose, ges-
ture activity, and speech activity can be set (see Fig. 3).
Speech is indicated by a rim around the head, speech-
supporting gesticulation (not visible in Fig. 3) by a rim
around the right hand. An extended and optionally ro-
tated arm indicates pointing or interaction with dis-
plays, notepads, and messages. An extended head indi-
cates looking down and extended legs indicate sitting.
Notepads and messages can only be moved around.



628 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

Fig. 3. Screenshot of the data annotation tool that was developed for
the case study. It is used to annotate hypothetical machine percep-
tion outputs for each of the 1 fps images exemplified by Fig. 2. This
annotated hypothetical machine perception is required as input by
the reasoning engine. The annotator clicks various parts of the sym-
bolic persons to manipulate their attributes and he uses the controls
at the bottom to record frames, zoom, and navigate the time axis.

Of course, functionality for recording, playing back,
zooming, and navigating through the data is included
in the user interface, and data files can be saved to be
reloaded later.

Using this approach, human annotators achieve be-
tween 10 and 20 seconds of data annotations per hour.
This is alright for developing reasoning methods us-
ing manageable amounts of data, but a more automatic
approach is required in the long run. This can range
from e.g. wearable sensors to obtain tracking data au-
tomatically while manually annotating other attributes,
to computer vision and speech detection, i.e. fully au-
tomatic unintrusive perception.

The resulting XML data, i.e. the input data for the
reasoning engine, consists of symbolic object repre-
sentations over time. The dynamic objects (with at-
tributes that change over time) are: persons, notepads,
and paper messages, and the static objects (with only
constant attributes) are: tables, displays, doors, and de-
vices. Their attributes are: name, type, position, hori-
zontal orientation, width, and height (in the horizon-
tal plane), and additionally for persons: gesture ac-
tivity (two types: one binary for speech supporting
gesticulation, one horizontal angle for pointing ges-
tures), speech activity (yes/no), vertical head orien-
tation (up/down), and body pose (sitting/standing).

Hence, the data annotations for persons consist of state
descriptors of the form [name:el, type:person, x:774,
y:412, w:54, h:20, orientation:144, speech:false, ges-
ture:-18, looking_down:true, sitting:false], meaning:
person el is located at x = 774 cm and y = 412 cm, has
width 54 cm and height 20 cm, and an orientation of
144◦. He is not speaking, pointing 18◦ left of his orien-
tation, looking down, and not sitting. The objects and
persons in Fig. 3 and similar images throughout this
paper are simply visualizations of such state descrip-
tors.

3.1.3. Ground-truth annotations
In addition to input data, we need ground-truth to

compare the reasoning output to. This is achieved
through manual annotation in a separate Python/Qt
software tool developed for the purpose of this case
study (Fig. 4). The annotator analyzes the symbolic
data (from Section 3.1.2/Fig. 3) in the bird’s eye
view to determine the correct situation descriptions,
i.e. the ground-truth for the reasoning engine’s out-
put. The patterns for the situation descriptions that
have to be annotated are supplied by the ground-
truth annotation tool. Using the interaction panel on
the right side of Fig. 4, the annotator has to repeat-
edly select the appropriate situation pattern as well
as the involved objects. The resulting situation de-
scription (i.e. ground-truth result) is stored in the list
in the top-right corner and the corresponding bound-
ing box is drawn in the bird’s eye view. With be-
tween 50 and 80 seconds of ground-truth per hour,
the ground-truth annotations are less time-consuming
than the data annotations (with 10–20 seconds per
hour).

This way, the annotator can produce the required
ground-truth: a set of situation descriptions for each
frame of annotated data. The ground-truth annotation
tool also offers functionality for recording, playback,
and navigation, and the ground-truth can be saved to
be reloaded later. The resulting XML ground-truth is
compared to the reasoning outputs during evaluation
(Section 4). Without knowledge of the reasoning pro-
cess’ inner workings, the annotator was instructed to
annotate the ground-truth according to his own obser-
vations and common sense. For this paper, the second
four minute section of annotated data was chosen for
ground-truth annotation, because it contains dynamic
control room operations only.

The following ground-truth situations were anno-
tated, because they represent common group constel-
lations and interaction patterns that occur during dy-



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 629

Fig. 4. Screenshot of the ground-truth annotation tool that was developed for the case study. It is used to annotate ground-truth that can be
compared to the reasoning engine’s output in order to evaluate its performance. The panel on the right is used select the appropriate situation
pattern as well as the involved objects, yielding list entries (top right) and labeled bounding boxes for the ground-truth situation descriptions.
The bottom of the interface contains functionality for recording, loading, saving, playing back, zooming, and navigating through the data.

namic control room operations. Italics signify vari-
ables that should be instantiated with a person or ob-
ject, and bold-italics signify variables that should be
instantiated with a list of persons.

– persons is-are listening to person,
– conversation between persons in group group,
– silent group group,
– persons in group group is-are sitting,
– persons in group group is-are standing,
– persons in group group is-are moving,
– persons is-are joining group,
– persons is-are leaving group,
– constant group group,
– person is pointing at object,
– person is pointing at object and persons is-are

looking at it,
– person is speaking and pointing at object,
– person is speaking and pointing at object and per-

sons is-are looking at it.

3.2. Reasoning

Now that the methods for annotating data and
ground-truth have been established, we turn to the
methods for automatic reasoning. After introducing
the applied methods, we present the part of our knowl-
edge base that is the subject of the evaluation in Sec-
tion 4: the situation graph trees (SGTs) as well as the
fuzzy metric temporal logic (FMTL) rules they deploy.

The XML data that were annotated using the data
annotation tool described in Section 3.1.2 are fed into
a reasoning engine based on FMTL and SGTs, promis-
ing and widely applicable tools for automatic behavior
understanding and related applications (see Section 1
for some examples) [4,14,29,42]. For implementation,
we use F-Limette, an FMTL reasoning engine (simi-
lar to Prolog) written in C, and the SGT-Editor: a Java
application for editing and traversing SGTs.

The SGTs constitute the top part of the reason-
ing process. FMTL rules are called from their nodes
to perform the bottom part of the reasoning process.



630 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

FMTL rules are largely domain independent and typ-
ically about spatiotemporal relations, whereas SGTs
are more domain specific as they usually constitute ab-
stract relations between the FMTL rules they deploy.
Once an FMTL rule base has been established, it stays
relatively fixed and it can be used by different SGTs
within the same application or even across different
application domains. Over the years, the FMTL/SGT
methods were incrementally improved while adhering
to their validity demonstrated in [4,18,22,40].

3.2.1. Applied methods – Fuzzy metric temporal logic
The FMTL language is a first order logic extended

with fuzzy evaluation and temporal modality. The lan-
guage uses fuzzy instead of binary truth values, en-
abling the modeling of inherently vague concepts.
Among other things, fuzzy evaluation can be used to
model concepts such as “a person moving fast” or
“two objects being close to each other”. Such concepts
should have truth values between 0.0 and 1.0 (rather
than simply true or false), depending on the numeric
speed of the person, the numeric distance between the
objects, or some other value. Furthermore, fuzzy eval-
uation can be used to model uncertainty in the input
data. How these methods can handle uncertainty in
addition to vagueness was addressed on a theoretical
level in [29], but for our current experiments we fo-
cus on modeling inherently vague concepts, without
uncertainty in the input data.

The second extension, temporal modality, enables
the modeling of developments along the time axis in-
stead of just at a single point in time. Rule condi-
tions can be grounded in past, current, and future states
of the world. Furthermore, FMTL possesses a metric
on time, allowing expressions about exact time differ-
ences in addition to categorical concepts such as “be-
fore” and “after”. Temporal modality is essential for
modeling the speed of an object for example, and for
modeling situations consisting of multiple phases. It
can also achieve a smoothing effect against noise, out-
liers, and brief changes that should be ignored.

3.2.2. Applied methods – Situation graph trees
Figure 5 shows an abstract SGT example that rec-

ognizes moving and stationary groups as well as meet-
ings at tables and interaction with displays. An SGT
is a hypergraph that consists of situation graphs, rep-
resented by transparent rounded rectangles. Addition-
ally, each situation graph contains one or more situa-
tion schemes, represented by opaque rectangles. Each
situation scheme possesses a name (top segments of
opaque rectangles in Fig. 5), one or more conditions

Fig. 5. An abstract example of a situation graph tree (SGT) that rec-
ognizes moving and stationary groups as well as meetings at tables
and interaction with displays. During SGT traversal, the conditions
(the middle segments of the rectangles) initiate deductions in FMTL
(i.e. Prolog-like reasoning processes in F-Limette). The actions (bot-
tom segments) can either be the generation of situation descriptions
or actuator commands.

(middle segments), and zero or more actions (bottom
segments). Typically, there is one SGT traversal per
frame per observed person (or vehicle for example).
Each traversal normally starts by selecting an agent for
that traversal (in the Root situation scheme). The se-
lected object becomes the center of the reasoning pro-
cess during that SGT traversal. During each traversal,
all possible paths between the root and the leafs of an
SGT are traversed. If a condition along a path cannot
be fulfilled, that path is done and the next one is started.
The truth values of the outputs along each path provide
feedback about which conditions cause the applicabil-
ity of each situation to decrease. If traversal does not
reach a leaf, but still fulfills part of the path to that leaf,
the outputs on the fulfilled part are generated, but the
ones below the point of failure are not, providing feed-
back about the cause of failure. More details about the
traversal algorithm can be found in [40].

The situation schemes’ conditions initiate deduc-
tions in FMTL (i.e. Prolog-like reasoning processes in
F-Limette). Each condition returns a truth value be-
tween 0.0 and 1.0, depending on the rules that were
directly or indirectly evaluated, and ultimately on the
atomic facts from the input data. The next condition
(either within the same situation scheme or in the next,
conceptually refined situation scheme) uses the truth
value returned by the previous one as base truth value.
This means that the situations deduced along each path



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 631

of an SGT are always ordered from generic to specific,
as their truth values cannot increase along the way. As
soon as a condition returns the truth value 0.0, reason-
ing stops and the next path is started from the root sit-
uation scheme.

The situation schemes’ actions generate the final
outputs of the system: situation descriptions, or in
embodied settings also actuator commands. The truth
value returned by the last condition above each action
is also associated with the action, representing vague-
ness, uncertainty, or both. Actions below unfulfilled
conditions (returning the truth value 0.0) are not ex-
ecuted, and, as we will see in Section 4, one can ig-
nore outputs with a truth value smaller than a certain
threshold.

Trying to deduce a more specific situation after a
more generic one is called conceptual refinement. This
is demonstrated by the situation schemes Stationary
group, Meeting at table, and Interaction with display in
Fig. 5, connected through the corresponding bold num-
bered edges. To model temporal dynamics and situa-
tions consisting of multiple phases, situation schemes
can be connected through temporal edges (thin num-
bered edges) as demonstrated by the situation schemes
Stationary group and Moving group in Fig. 5. The
numbers along these bold and thin edges do not have
any special meaning for the presented experiments.
The squares in the upper left and upper right corners of
situation schemes indicate start situations and end situ-
ations in temporal chains, and the circles on their upper
right corners represent reflexive temporal edges. For
our current experiments, we focus on temporal modal-
ity implemented at rule level as opposed to using tem-
poral SGT edges. Temporal modality at rule level was
introduced in Section 3.2.1 and it will be demonstrated
in Section 3.2.3.

3.2.3. Knowledge base – Situation graph trees and
fuzzy metric temporal logic rules

Compared to [29], the SGTs and FMTL rules pre-
sented in this paper are considerably more advanced.
We have developed a detailed taxonomic model of spa-
tiotemporal concepts, interaction patterns, and group
constellations, part of which is used and explained in
this paper. Besides its use for the current case study
and evaluation, this model (including the rules and
trees not presented in this paper) is relevant to the field
of high-level reasoning in general, and to many differ-
ent application domains, such as the ones presented at
the end of Section 1.

After analyzing the data, axioms for group models
were formulated on a natural language level and then
formalized into SGTs and FMTL rules using common
sense knowledge and empirical trials. Which numeric
distances, angles, and speeds correspond to which se-
mantic concepts was also determined through common
sense and empirical trials, and by comparing the data
to other real-world examples (e.g. from surveillance
data and average pedestrian speeds).

The four SGTs that are evaluated in Section 4 were
developed to recognize common group constellations
and interaction patterns that occur during dynamic
control room operations. Following from the data anal-
ysis and knowledge formalization process these SGTs
model groups in terms of the proximity of their mem-
bers and the similarity between their orientations, their
orientations toward each other, or orientations toward
a mutual object or person. Two of the SGTs use this
group model as their base, but they have different con-
ceptual refinements. One of them models speech be-
havior across time within recognized groups and dis-
tinguishing between silent groups, monologues, and
discussions. The other describes the sitting, standing,
and moving members within groups. These refine-
ments are again based on the observed data and on
common sense knowledge. The third SGT uses the
same group model as its base, but it extends it across
time in order to recognize staff members that are join-
ing and leaving groups. Following from the observed
data and common sense knowledge, the fourth SGT
applies a different strategy. It detects staff members
that are referring to objects through pointing gestures
and speech. Then, it selects the surrounding staff mem-
bers that are oriented at the object or person that is be-
ing referred to.

Figures 6 through 9 display these SGTs, rendered by
the SGT-Editor that also performed the experiments.
All FMTL rules that are directly or indirectly used
by the SGTs are listed and explained in Appendix A
(interface specification) and Appendix B (rule specifi-
cations in alphabetical order). Furthermore, the rules
in Appendix B that are considered non-trivial and not
too verbose are included in Appendix C (Formulas 1
through 25) and Appendix D (graphs of trapezoid
truth functions). These formulas are the logic notation
equivalent of the actual source code, and the graphs
are simply visualizations of further source code. Ev-
ery FMTL rule that is directly or indirectly used by
the presented SGTs also has a brief explanation in Ap-
pendix A or B. And the ones that have their formulas



632 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

Fig. 6. An SGT that recognizes groups and their speaking and listen-
ing members.

listed in Appendix C are referenced accordingly from
Appendix B and the text below.

Appendices A, B, and C use the following conven-
tions. List variables are boldfaced, nested predicate
variables are capitalized, and constant arguments are
non-italic to distinguish them from variables, allow-
ing us to omit quantifiers. Terms of the form �dtφ

mean: φ at time t = tcurrent + dt . Terms of the
form �a%

dt1,dt2
φ mean: φ in at least a% of time interval

[tcurrent + dt1, tcurrent + dt2]. The symbol ! is the cut
operator, preventing a rule from querying its remaining
conditions. For practical reasons, the SGTs in Figs 6

Fig. 7. An SGT that recognizes groups and their sitting, standing,
and moving members.

through 9 use a different capitalization convention than
Appendices A, B, and C.

Groups with speaking and listening members All
four SGTs have the same Root node, selecting a per-
son as the agent for the current traversal. The first SGT
(Fig. 6) recognizes groups and their speaking and lis-
tening members. Its Group node selects all persons
other than the agent as possible patients and filters
them to only the ones that can be considered part of
the same group as the agent, using filter(Persons1a,
inSameGroup(A, elem), Persons1b) (Appendix C, For-
mula 5). Then, the node NotSpeaking checks whether
neither the agent nor any of the other persons in the
group are speaking during a 5 s interval, using inShort-
Interval(speaking(P)) (Appendix C, Formula 25). If
nobody is speaking (not(inShortInterval(speaking(A)))
and empty(Persons2)), an output like “silent group a
p1 p2 p3” is generated, where a is the agent for the cur-
rent traversal and p1, p2, p3 are three other persons that
fulfill the described conditions. In the other branch,



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 633

Fig. 8. An SGT that recognizes groups and their joining and leaving
members.

the node Speaking checks to what degree the agent
and the other persons in the group are speaking dur-
ing the same 5 s interval. Then, if the agent is speak-
ing, the node Conversation checks whether at least
one of the other persons in the group is also speak-
ing: filter(Persons1b, inShortInterval(speaking(elem)),
Persons3a) and not(empty(Persons3a)). If so, the SGT
outputs something of the form “conversation between
a p1 in group a p1 p2 p3”. If none of the other per-
sons in the group are speaking (filter(Persons1b, in-
ShortInterval(speaking(elem)), Persons3a) followed
by empty(Persons3a)), the node Listening outputs
something like “p1 p2 p3 listening to a”.

Groups with sitting, standing, and moving members
The second SGT (Fig. 7) recognizes groups and their
sitting, standing, and moving members. Its Root and
Group node are the same as in Fig. 6, except for the ad-
ditional condition appendHead(A, Persons1b, Group).
Then, the SGT splits into three branches. In the node
Sitting, the agent’s sitting property should hold, and
the persons in the group are filtered to only those that

Fig. 9. An SGT that recognizes groups that are oriented at an object
that is being referred to.

are sitting. The corresponding output is of the form “a
p1 from group a p1 p2 p3 are sitting” (a is the current
agent, p1, p2, p3 are other persons fulfilling the ap-
propriate conditions). In the node Standing, the agent’s
sitting property should not hold, neither should he be
moving (see Appendix C, Formula 15). The group is
then filtered to only the members that are not sitting
and not moving, i.e. that are standing. The correspond-
ing output is of the form “a p1 from group a p1 p2 p3
are standing”. Finally, the node Moving uses a simi-
lar method to generate output of the form “a p1 from
group a p1 p2 p3 are moving”.

Groups with joining and leaving members The third
SGT (Fig. 8) starts with the usual Root node and
a node called GroupInShortInterval. It uses groupIn-
ShortInterval(. . . ) (Appendix C, Formula 3) to detect
the group around the agent during the previous and
current frame and it uses joiningLeavingGroup(. . . )
(Appendix C, Formula 6) to determine which mem-
bers join and leave the group during this time. If the
list of joining members is not empty, the node Join-
ing outputs something like “p1 joining a p2 p3”. The



634 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

node called Leaving does the same for leaving mem-
bers, e.g. “p1 leaving a p2 p3”. Finally, in NeitherJoin-
ingNorLeaving, output of the form “constant group a
p1 p2 p3” is generated if empty(JoiningMembers) and
empty(LeavingMembers).

Groups oriented at referred object The fourth and
last SGT (Fig. 9) recognizes groups that are gathered
around an object that is being referred to. After the
Root node, it uses pointingAtNearbyObject(. . . ) (Ap-
pendix C, Formula 2) in its Pointing node to deter-
mine whether the agent is pointing at a nearby ob-
ject. Then, the nodes NotSpeaking and Speaking use
inShortInterval(. . . ) (Appendix C, Formula 25) to de-
termine whether the agent is speaking in a 5 s inter-
val, generating the corresponding output “a pointing
at obj” or “a pointing at obj and speaking”. Note that
one could also combine the conditions for pointing and
speaking into one rule (using the agent’s orientation
toward the object in the absence of pointing), so that
pointing would not be a necessary condition. Alterna-
tively, two independent SGTs could be used to rec-
ognize groups gathered around an object that is being
pointed at and groups gathered around an object that
is being talked about. Such SGTs would operate sep-
arately, but their outputs would be gathered and po-
tentially merged. The nodes Looking1 and Looking2
are identical, except for their outputs. They use distBe-
tweenInnerPerimeters(. . . ) (Appendix C, Formula 12)
to find the persons close to the agent and lookingAt-
NearbyObject(. . . ) (Appendix C, Formula 1) to filter
them to only the ones that are looking at the object that
the agent is pointing at. Their outputs are of the form
“a pointing at obj and p1 p2 p3 looking at it” and “a
pointing at obj and speaking and p1 p2 p3 looking at
it” respectively.

4. Evaluation

The system was evaluated in four experiments,
where the goal was to have the situation graph trees
(SGTs) produce the same situation descriptions as a
human annotator. Input data for these experiments was
annotated using the method described in Section 3.1.2.
These input data are fed into each of the four SGTs
displayed in Figs 6 through 9, and the results are com-
pared to appropriate ground-truth that was annotated
using the method described in Section 3.1.3.

From the 28 minutes of available input data, 4 min-
utes were selected for ground-truth annotation. A mo-

tivation for selecting these data and ground-truth is
given in Sections 3.1.2 and 3.1.3. Each of the four
experiments described below uses more than 1000
ground-truth results. On average, each experiment has
six ground-truth results per second. All situation de-
scriptions generated by the system were compared to
the ones produced by a human annotator in a perfor-
mance evaluation, counting false negatives, false pos-
itives, and true positives in order to calculate preci-
sion, recall, and F-score (harmonic mean of precision
and recall). This was repeated for truth value thresh-
olds between 0.1 and 1.0 (with step size 0.1). Rea-
soning results with truth values smaller than the ap-
plied truth value threshold are rejected, so increasing
the truth value threshold leads to higher precision but
lower recall.

Note that the presented problem is not a classifi-
cation between a few classes. Instead, the situation
template (e.g. “conversation between persons in group
group”) must be classified correctly, and all involved
persons and objects (e.g. instantiating the list variables
persons and group) must be consistent with the anno-
tated ground-truth. After presenting the conducted ex-
periments in Section 4.1, errors are discussed in Sec-
tion 4.2 and runtimes in Section 4.3.

To introduce the evaluation procedure, Appendix E
shows an example frame with ground-truth annota-
tions (top) as well as corresponding reasoning results
and truth values (bottom), rendered by the tool de-
scribed in Section 3.1.3. The displayed frame is from
the first experiment described below. It contains the
situation descriptions “persons is-are listening to per-
son”, “conversation between persons in group group”,
and “silent group group”.

4.1. Experiments

Groups with speaking and listening members In
this experiment, groups are classified with respect to
which members are speaking, distinguishing between
groups listening to a single speaker, conversations,
and silent groups (SGT in Fig. 6). This SGT gener-
ates situation descriptions of the form “group listening
to person”, “conversation between persons in group
group”, and“silent group group”. Example ground-
truth (top) and the corresponding reasoning result (bot-
tom) are visualized in Fig. 10. Similarly, Figs 13, 16,
and 19 provide examples for the other three experi-
ments.

In this example, three persons are close together
with two of them oriented at the third one (s3), sat-



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 635

Fig. 10. Example ground-truth (top) and corresponding reasoning
results with their truth values (bottom) from the experiment “groups
with speaking and listening members”.

Fig. 11. Truth values V over time for some example ground-truth and
corresponding reasoning results, from the experiment “groups with
speaking and listening members”. The bold line shows the annotated
ground-truth and the thin line shows the reasoning results.

isfying the conditions for InSameGroup(p, q) (Ap-
pendix C, Formula 5). Because only s3 is speak-
ing between t = −2 and t = 2 (InShortInter-
val(Speaking(p)), Appendix C, Formula 25), the out-
put “uad uah is-are listening to s3” is generated. Fur-

Fig. 12. System performance for the experiment “groups with speak-
ing and listening members” (SGT in Fig. 6): precision, recall, and
F-score over varying truth value thresholds, and the number of
ground-truth results and reasoning results involved (the latter de-
pending on the truth value threshold). The bottom graphs, from left
to right, show the separated performance for each type of situation
description generated by the SGT: “persons is-are listening to per-
son”, “conversation between persons in group group”, and “silent
group group”.

ther examples from this experiment can be found in
Appendix E.

The following also applies to Figs 14, 17, and 20.
Each of the three situation descriptions generated
by this SGT is further exemplified by the graphs in
Fig. 11, where the truth values of specific situations
are plotted over time. As the positions, orientations,
and amounts of speech of the involved persons vary,
the truth values of the recognized situations in Fig. 11
vary with them. The goal is to maximize the correspon-
dence between the bold line (annotated ground-truth)
and the thin line (reasoning results).

The following also applies to Figs 15, 18, and 21.
The system performance for this experiment is dis-
played in Fig. 12. Precision, recall, and F-score are
plotted as a function of the applied truth value thresh-
old (below which results are rejected, higher truth



636 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

Fig. 13. Example ground-truth (top) and corresponding reasoning
results with their truth values (bottom) from the experiment “groups
with sitting, standing, and moving members”.

Fig. 14. Truth values V over time for some example ground-truth and
corresponding reasoning results from the experiment “groups with
sitting, standing, and moving members”. The bold line shows the
annotated ground-truth and the thin line shows the reasoning results.

value thresholds leading to higher precision but lower
recall). The bottom graphs show the separated perfor-
mance for each type of situation description gener-
ated by the SGT, in this case: “persons is-are listening
to person”, “conversation between persons in group
group”, and “silent group group” (from left to right).

Groups with sitting, standing, and moving members
Here, groups are assorted with respect to which mem-
bers are sitting, standing, and moving (SGT in Fig. 7).

Fig. 15. System performance for the experiment “groups with sit-
ting, standing, and moving members” (SGT in Fig. 7): precision, re-
call, and F-score over varying truth value thresholds, and the number
of ground-truth results and reasoning results involved (the latter de-
pending on the truth value threshold). The bottom graphs, from left
to right, show the separated performance for each type of situation
description generated by the SGT: “persons in group group is-are
sitting”, “persons in group group is-are standing”, and “persons in
group group is-are moving”.

This SGT generates situation descriptions of the form
“persons in group group is-are sitting”, “persons in
group group is-are standing”, and “persons in group
group is-are moving”. Some examples are visualized
in Fig. 13 and plotted over time in Fig. 14. In Fig. 13,
uab and uad belong to the same group, because they
are close together and they have appropriate orienta-
tions; InSameGroup(p, q), (Appendix C, Formula 5).
Their positions accross three frames change enough
for the system to output “uab uad in group uab uad is-
are moving”; SpeedInShortInterval(p, c) (Appendix C,
Formula 15) The system performance for this experi-
ment is displayed in Fig. 15.

Groups with joining and leaving members This ex-
periment deals with groups and persons that are join-
ing and leaving them (SGT in Fig. 8). The situa-
tion descriptions are: “persons is-are joining group”,



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 637

Fig. 16. Example ground-truth (left) and corresponding reasoning
results with their truth values (right) from the experiment “groups
with joining and leaving members”, with three consecutive frames
from top to bottom.

“persons is-are leaving group”, and “constant group
group”. Example screenshots and truth value over time
plots are provided in Figs 16 and 17. The top row
in Fig. 16 shows a group of three persons. In the
second row, the next frame, s3a is not part of the
group anymore, due to his changed position and ori-
entation. This is achieved using GroupInShortInter-
val(p, q, r, s) and JoiningLeavingGroup(p, q, r, s), (Ap-
pendix C, Formulas 3 and 6), yielding the output “s3a
is-are leaving s3a uaf uag”. In the next frame (bottom
row), the system outputs “constant group uaf uag”, be-
cause s3a has left. System performance is displayed in
Fig. 18.

Groups oriented at referred object The last experi-
ment detects groups in which one of the members is re-
ferring to an object, and others are oriented at it (SGT
in Fig. 9). The situation descriptions generated by this

Fig. 17. Truth values V over time for some example ground-truth and
corresponding reasoning results from the experiment “groups with
joining and leaving members”. The bold line shows the annotated
ground-truth and the thin line shows the reasoning results.

SGT are: “person is pointing at object”, “person is
pointing at object and persons is-are looking at it”,
“person is speaking and pointing at object”, and “per-
son is speaking and pointing at object and persons is-
are looking at it”. The corresponding example screen-
shots, truth value over time plots, and system perfor-
mance are provided in Figs 19, 20, and 21. For Fig. 19,
the reasoning engine checks whether the current agent
(uag) is pointing at an object (unitTable); PointingAtN-
earbyObject(p, q, c), Appendix C, Formula 2. Because
s3a is in the same group as uag (InSameGroup(p, q),
Appendix C, Formula 5), the output “uag is speaking
and pointing at unitTable and s3a is-are looking at it”
is generated.

4.2. Error analysis

Performance graphs The following is an overview of
the most notable facts deduced from the performance
graphs in Figs 12, 15, 18, and 21.

– Groups with speaking and listening members
(Fig. 12):

∗ best overall performance (F-score > 0.6) for
truth value thresholds 0.2, 0.3, and 0.4,



638 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

Fig. 18. System performance for the experiment “groups with join-
ing and leaving members” (SGT in Fig. 8): precision, recall, and
F-score over varying truth value thresholds, and the number of
ground-truth results and reasoning results involved (the latter de-
pending on the truth value threshold). The bottom graphs, from left
to right, show the separated performance for each type of situation
description generated by the SGT: “persons is-are joining group”,
“persons is-are leaving group”, and “constant group group”.

∗ overall number of results (gray area in top
graph) in good proportion to number of ground-
truth situations (dashed horizontal line),

∗ “persons is-are listening to person” (bottom
left): number of results (gray area) small com-
pared to number of ground-truths (dashed hor-
izontal line), causing low recall,

∗ “conversation between persons in group group”
(bottom center): only low truth value results
(proportional to amount of speech in group in
3s interval, causing a preference for low truth
value thresholds), too little reasoning results
compared to ground-truth (causing low recall).

– Groups with sitting, standing, and moving mem-
bers (Fig. 15):

∗ best overall performance (F-score ≈ 0.6) for
truth value thresholds 0.4 and 0.5,

Fig. 19. Example ground-truth (top) and corresponding reasoning
results with their truth values (bottom) from the experiment “groups
oriented at referred object”.

∗ overall number of results in good proportion to
number of ground-truths,

∗ “persons in group group is-are moving” (bot-
tom right): relatively poor performance, small
number of situations present.

– Groups with joining and leaving members
(Fig. 18):

∗ best overall performance (F-score > 0.6) for
truth value thresholds 0.3 and 0.4,

∗ overall number of results in good proportion to
number of ground-truths,

∗ “constant group group” (bottom right): rela-
tively good performance and large number of
situations present.

– Groups oriented at referred object (Fig. 21):

∗ best overall performance (F-score ≈ 0.6) for
truth value thresholds 0.7 and 0.8,

∗ overall nr. of results large compared to number
of ground-truths, causing low precision,



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 639

Fig. 20. Truth values V over time for some example ground-truth
and corresponding reasoning results from the experiment “groups
oriented at referred object”. The bold line shows the annotated
ground-truth and the thin line shows the reasoning results.

∗ best performance and most situations present
for “person is pointing at object”.

Possible optimizations One of the conditions for the
recognition of a group is the proximity of its mem-
bers. False negatives occur if this condition is not met.
Sometimes, one of the group members is standing at
a distance from the rest of the group. Human anno-
tators can usually deduce from the context that he is
still part of the group, whereas our current knowledge
base applies the proximity between group members
as a necessary condition. Optimizing the parameters
of the trapezoid truth functions in Appendix D could
solve some of these cases, effectively increasing the
system’s separating power by changing the proxim-
ity conditions. Other cases cannot be solved like this.
They would require more complex models instead.

Fig. 21. System performance for the experiment “groups oriented at
referred object” (SGT in Fig. 9): precision, recall, and F-score over
varying truth value thresholds, and the number of ground-truth re-
sults and reasoning results involved (the latter depending on the truth
value threshold). The bottom graphs, from left to right, show the
separated performance for each type of situation description gener-
ated by the SGT: “person is pointing at object”, “person is pointing
at object and persons is-are looking at it”, “person is speaking and
pointing at object”, and “person is speaking and pointing at object
and persons is-are looking at it”.

Some false negatives are caused by correct results
with low truth values. In such cases, correct results are
ignored because of the applied truth value threshold.
An example thereof with a truth value of 0.2 is visible
in the top-right of the images in Appendix E. Detect-
ing this result using a truth value threshold � 0.2 is
not feasible, because it would lead to many false pos-
itives elsewhere in the data. The opposite effect also
occurs: wrong results with truth values higher than the
applied truth value threshold. Wrong results with low
truth values on the other hand, can be filtered out using
an appropriate truth value threshold.

Further errors are caused by either too many or
too few group members. More specifically, annota-
tors tend to select the largest possible groups, whereas
the reasoning engine sometimes prefers a subgroup
thereof, due to failing conditions for some of the per-
sons involved. Such errors might be solved by ap-



640 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

plying more subtle (fuzzy and temporal) conditions,
or by optimizing the trapezoid truth functions in Ap-
pendix D.

In other cases, two groups are interpreted as one
because of their close proximity and harmonic orien-
tations. This could again be partially solved by opti-
mizing the trapezoids, and by modeling more subtle
fuzzy temporal conditions, paying more attention to
the members’ attributes in neighboring frames. Fur-
thermore, single groups are sometimes interpreted as
two groups when the members are not close enough
together. The applied proximity condition could be
combined with fuzzy temporal interaction conditions
to cover such cases. There are also cases where per-
sons are recognized as members of two groups si-
multaneously. Annotators seem to apply a constraint
against this that our knowledge base does not yet have.
Finally, a staff member passing through or passing
by a group is interpreted as joining, belonging to,
and leaving the group, leading to further errors. Ad-
ditional conditions should check how long the staff
member stays and whether he is interacting with the
group.

To achieve a more powerful knowledge base with
more fine-grained control, more FMTL rules should be
wrapped in rules like InShortInterval(C) (Appendix C,
Formula 25), combining the power of temporal modal-
ity and fuzzy evaluation. Furthermore, the slopes of the
trapezoid truth functions could be widened to facilitate
fuzziness, and the rule RayHitsObject(p, o, q) in partic-
ular (Appendix B) could benefit from more fuzzy con-
ditions. For some temporal modeling (e.g. of speed), a
higher temporal resolution than 1 fps would be bene-
ficial, which can be obtained or at least approximated
by interpolating the current data annotations.

Performance criteria One could reconsider the ap-
plied performance criteria. For some applications, a
hard truth value threshold would not be necessary.
One could instead report and visualize all results along
with their truth values, and have a human operator
decide which results are the most interesting. Un-
der such criteria (truth value threshold � 0.01) one
would require high recall with reasonable precision.
Figures 12, 15, 18, and 21 show that this can be
achieved.

One can also perform the presented evaluations
while allowing for small temporal offsets to show
that some correct situations are detected too early or
too late, but within a few seconds from the anno-
tated ground-truth. For some applications, these results

Table 1

Runtime on a desktop computer with a six core Intel Xeon W3690
CPU: total runtime for each experiment (with 240 s of 1 fps input
data) and average runtime per frame of input data

Experiment Runtime
in s

Runtime
in s/frame

Groups with speaking and listening
members

1131 4.7

Groups with sitting, standing, and
moving members

959 4.0

Groups with joining and leaving
members

2602 10.8

Groups oriented at referred object 563 2.3

would still be valuable. Similarly, the evaluations can
be performed while allowing for partial group member
match. This means that the list variables in the results
and ground-truth only have to match by a fraction be-
tween 0.0 and 1.0. Results with partial group member
match would still be valuable for some applications.
Performance increases if such concessions are made.

4.3. Runtime

For many applications, real-time performance is es-
sential. In this case study, the system achieves near-
real-time performance and actual real-time is within
reach. Table 1 lists the runtimes for the four experi-
ments explained above, i.e. how long it took to process
the four minutes of 1 fps input data that were used for
each experiment. Runtime depends on many factors
that are determined by the application domain at hand.
In the current case study, the frame rate is only 1 fps,
leading to faster runtimes. However, as many as 25
persons and 35 objects are involved, which leads to
slower runtimes. The applied hardware and paralleliza-
tion strategy also have a profound effect on runtime,
in this case a desktop computer with a six core Intel
Xeon W3690 using CPU multithreading. Finally, run-
times can be improved by optimizing the SGT traver-
sal algorithm, preserving reasoning results that can be
used again in other parts of the traversal.

5. Conclusion

This paper is concerned with automatic behavior
understanding in smart work environments. The pre-
sented system automatically generates situation de-
scriptions from annotated machine perception using
fuzzy metric temporal logic (FMTL) and situation



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 641

graph trees (SGTs). It is evaluated in a case study on
automatic behavior report generation for staff training
purposes in crisis response control rooms. The moti-
vation for this case study is the ability to automati-
cally generate reports for multimedia retrieval, in or-
der to increase the learning effect of recorded staff ex-
ercises. The required machine perception is annotated
based on a real fire brigade exercise, using a specially
developed data annotation tool. This hypothetical ma-
chine perception consists of person tracks, object in-
formation, and information about gestures, body pose,
and speech activity, used as input by an FMTL/SGT
reasoning engine to deduce situation descriptions: var-
ious group constellations and interaction patterns that
can be used for automatically generated behavior re-
ports.

Compared to [29], the contribution of this paper
consists of significant improvements to the knowledge
base that models group constellations and interaction
patterns, some useful improvements to the software
tools for annotating and visualizing data, ground-truth,
and results, and a detailed quantitative evaluation of
the system and its current results, using a substantial
set of self-developed data and ground-truth. Four ex-
periments were conducted in which the situation de-
scriptions generated by the reasoning engine are com-
pared to annotated ground-truth, produced by a self-
developed ground-truth annotation tool. This is not
a classification problem between a few classes. Sit-
uations must be classified correctly and all involved
persons and objects must be consistent with ground-
truth.

Future work There are plenty of opportunities to
build upon the work presented in this paper. We will
keep improving the FMTL rules and SGTs and per-
form new experiments with them, using the same data
combined with a new set of ground-truth. Some ideas
for improvements have been presented in Section 4.2.
We will expand the knowledge base to recognize more
sophisticated situations from the presented case study
data, exploiting the full power of fuzzy evaluation and
temporal modality. For example, we plan to model
briefings (a recurring situation in control room oper-
ations) and their distinct phases, as well as the de-
livery and processing of messages, and persons un-
derway between specific locations. Furthermore, we
are analyzing inter-annotator agreement, adding DB-
SCAN (clustering) as preprocessing, and performing
parameter learning on the applied trapezoid truth func-
tions.

Another interesting opportunity is to perform exper-
iments on imperfect data to evaluate the system’s ro-
bustness. In previous studies [29,42], we took a first
step in this direction, but some challenges remain. Im-
perfect data can contain noise, outliers, uncertainty,
and gaps, which can be created artificially, as shown
for data gaps in [42]. We plan to perform repeated ran-
dom experiments, adding different amounts of noise,
outliers, uncertainty, and data gaps, evaluating their in-
fluence on system performance. In [29], we described
on a theoretical level how the applied methods can han-
dle each type of imperfection, and how uncertainty val-
ues associated with the input data can be combined
with truth values expressing vagueness. But these the-
ories need to be evaluated, and the heuristics for com-
bining uncertainty and vagueness need to be chosen
carefully. Additionally, under certain circumstances, it
will be benificial to interpolate the annotated data to
obtain higher frame rates than 1 fps.

Furthermore, end-users, human science experts, and
developers of crisis response software should get in-
volved. The current case study is focused on the phys-
ical attributes of the people and objects in the room,
but the system can be improved by taking into ac-
count more domain specific attributes, i.e. context in-
formation: field unit status, crisis dynamics, staff roles,
more sophisticated object information, which can be
largely obtained by monitoring developments in the
crisis response software that is being used. This would
allow us to model more sophisticated expert knowl-
edge in FMTL and SGTs to deduce a richer set of sit-
uation descriptions that is of greater use to potential
end-users.

Finally, the presented system can be applied to other
application domains, such as the ones described in
Section 1. Our research is situated in an environ-
ment that focuses on computer vision, other forms of
machine perception, and human-machine interaction,
which facilitates the progress toward an online system.
The ultimate goal is a domain independent real-time
system containing various machine perception compo-
nents instead of annotated hypothetical machine per-
ception, that has embodiment and action generation as
well as synchronous real-time visualizations of sen-
sor data, machine perception, and situation descrip-
tions.

Acknowledgements

This work is supported by Fraunhofer-Gesellschaft
Internal Programs Grant 692026.



642 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

Appendix

A. Interface specification

Rules for selecting objects as agents and patients, rules for obtaining atomic facts from the input data, and a rule for
generating output.

Rule head Explanation

SelectPersonAsAgent(p) Select person p as center of reasoning (i.e. agent) for current traversal – Type(p,person).

SelectPatient(p, q) Select person/object q as reasoning subject (i.e. patient) with agent p – q �= p.

SelectPatients(p, q) Select list q containing all possible patients for agent p – q ∈ q⇔q �= p.

SelectPersonPatients(p, q) Select list q containing all possible patients of type person for agent p – q ∈ q ⇔ q �= p ∧ Type(q, person).

Type(p, t) Query type t for person/object p.

Position(p, x, y) Query position x, y for person/object p.

Size(p, w, h) Query size w, h (in the horizontal plane) for person/object p.

Orientation(p, o) Query horizontal orientation o for person/object p.

Geometry(p, x, y, w, h, o) Query geometry x, y, w, h, o for person/object p.

Speaking(p) Query if person p is speaking.

Gesticulating(p) Query if person p is gesticulating.

ExtendingArm(p, o) Query horizontal orientation o for extended arm of person p.

LookingDown(p) Query if person p is looking down.

Sitting(p) Query if person p is sitting.

Output(a, b, . . . ) Output a string consisting of the arguments a, b, . . . (arbitrary number of arguments).

B. Rule specifications

All rules that are directly or indirectly used by the SGTs in Figs 6 through 9, in alphabetical order.

Rule head Explanation

AbsOrientationOfExtendedArm(p, o) Orientation o (in ◦) is the absolute orientation of person p’s extended arm (Appendix C: Formula 9).

AppendHead(p, q, r) Append element p to the head of list q, yielding list r (r = {p} ∪ q).

AngleBetweenPoints(x1, y1, x2, y2, a) Angle a is the angle of the line between points (x1, y1) and (x2, y2) (Appendix C: Formula 23).

AssocDiffBtwnOrient&AngToCenter(d, c) Associate difference d (in ◦) with difference category c, where d is the difference between the ori-
entation of a person/object and the angle of the line between its center and another person’s/object’s
center. Category c can either be instantiated (e.g. with “small”) which returns an appropriate truth
value, or uninstantiated, allowing the rule to return a truth value > 0 for each defined and appropri-
ate category (e.g. more than one of “no, small, medium, large”) (Appendix D).

AssocDiffBetweenOrientations(d, c) Associate difference d (in ◦) with difference category c, where d is the difference between the orien-
tations of two persons/objects. Category c can either be instantiated or uninstantiated (Appendix D).

AssocDistBetweenCenters(d, c) Associate distance d (in cm) with distance category c, where d is the distance between the centers
of two persons/objects (Appendix D).

Continues on next page.



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 643

Continued from previous page.

AssocDistBetweenInnerPerimeters(d, c) Associate distance d (in cm) with distance category c, where d is the distance between the inner
perimeters of two persons/objects (Appendix D).

AssocSpeedInShortInterval(v, c) Associate speed v (in cm/s) with speed category c, where v is the speed of a person/object over 3 s

(Appendix D).

Atanoid(dx, dy, a) Angle a is the arctangent for two perpendicular lines dx and dy (like atan2, but in a different coor-
dinate system).

BuildGroup(p, q, r) List r contains person p and all persons q ∈ q that fulfill InSameGroup(p, q) (r = {p} ∪ {q ∈ q : In-
SameGroup(p, q)}, Appendix C: Formula 4).

CalcDiffBtwnOrient&AngToCenter(p, q, d) Calculate difference d (in ◦) between the orientation of person/object p and the angle of the line
between p’s center and another person/object q’s center (Appendix C: Formula 19).

CalcDiffBetweenOrientations(p, q, d) Calculate difference d (in ◦) between the orientations of two persons/objects p and q (Appendix C:
Formula 18).

CalcDistBetweenCenters(p, q, d) Calculate distance d (in cm) between the centers of persons/objects p and q (Appendix C: For-
mula 16).

CalcDistBetweenInnerPerimeters(p, q, d) Calculate distance d (in cm) between the inner perimeters of persons/objects p and q (Appendix C:
Formula 17).

CalcSpeedInShortInterval(p, v) Calculate speed v of person/object p, using a 3 s interval (Appendix C: Formula 20).

Call(C) Call rule head C and return its truth value. This is used to call rules dynamically at runtime.

DiffBetweenAngles(a, b, d) Calculate difference d (in ◦) between angles a and b (Appendix C: Formula 24).

DiffBetweenAngles(x1, y1, x2, y2, b, d) Calculate difference d (in ◦) between the angle of the line spanning points (x1, y1) and (x2, y2), and
angle b (Appendix C: Formula 22).

DiffBtwnOrient&AngToCenter(p, q, c) Calculate the difference between the orientation of person/object p and the angle of the line be-
tween p’s center and another person/object q’s center. Then associate this difference with difference
category c (Appendix C: Formula 14).

DiffBetweenOrientations(p, q, c) Calculate the difference between the orientations of persons/objects p and q and associate this dif-
ference with difference category c (Appendix C: Formula 13).

Difference(p, q, r) List r is the set difference of lists p and q (r = p \ q); r contains all members of p that are not
members of q.

DistBetweenCenters(p, q, c) Calculate the distance between the centers of persons/objects p and q and associate this distance
with distance category c (Appendix C: Formula 11).

DistBetweenInnerPerimeters(p, q, c) Calculate the distance between the inner perimeters of persons/objects p and q and associate this
distance with distance category c (Appendix C: Formula 12).

DistBetweenPoints(x1, y1, x2, y2, d) Calculate distance d (in cm) between points (x1, y1) and (x2, y2) (Appendix C: Formula 21).

Empty(p) Determine whether p is an empty list (p = ∅).

Filter(p, C, q) Filter list p, applying rule head C to its elements. List q contains the elements of p that fulfill rule
head C (q = {p ∈ p : p fulfills C}). The truth value returned by Filter(p, C, q) is the average of
the truth values returned by rule head C applied to the elements of p. If none fulfill C, q = ∅, and
Filter(p, C, q) returns truth value 1.0. Rule head C has the constant “elem” as one of its arguments,
which is a placeholder for the elements of p.

GroupInShortInterval(p, q, r, s) List r contains person p and all persons in list q that fulfill BuildGroup(p, q, r) at t = tcurrent − 1.
List s contains person p and all persons in list q that fulfill BuildGroup(p, q, s) at t = tcurrent
(Appendix C: Formula 3).

Continues on next page.



644 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

Continued from previous page.

InSameGroup(p, q) Persons/objects p and q are in the same group if the distance between their centers is small and,
either q is oriented at p, or p and q have the same orientation, or they are oriented at the same
person/object r (Appendix C: Formula 5).

InShortInterval(C) Call rule head C for every second in interval [tcurrent − 2, tcurrent + 2] and return a truth value that
is proportional to the number of seconds that C is fulfilled (Appendix C: Formula 25).

Intersection(p, q, r) List r is the set intersection of lists p and q ( r = p ∩ q); r contains all elements that are in p as
well as in q.

JoiningLeavingGroup(p, q, r, s) Given a group at t = t1 (p) and at t = t2 (q), lists r and s respectively contain the members that
joined and left the group between t1 and t2 (Appendix C: Formula 6).

LookingAt(p, q) Determine whether person p is looking at person/object q (Appendix C: Formula 7).

LookingAtNearbyObject(p, q, c) Determine whether person p is looking at person/object q and associate the distance between p
and q with distance category c (Appendix C: Formula 1).

MaxAndMin(a, b, max, min) Given two numbers a and b, determine their maximum and minimum.

NegFilter(p, C, q) Filter list p, applying rule head C to its elements. List q contains the elements of p that do not fulfill
rule head C (q = {p ∈ p : ¬(p fulfills C)}). NegFilter(p, C, q) returns truth value 1.0. Rule head C
has the constant “elem” as one of its arguments, which is a placeholder for the elements of p.

NormalizeAngle(a, b) Angle b is the normalized equivalent of angle a.

Not(C) Invert the truth value returned by rule head C (the F-Limette equivalent of “¬”).

OrientedAtSame(p, q, r) Determine to what degree persons p and q are oriented at the same person/object r, depending on
their distances to r as well as their orientations relative to r (Appendix C: Formula 10).

PointingAt(p, q) Determine whether person p is pointing at person/object q (Appendix C: Formula 8).

PointingAtNearbyObject(p, q, c) Determine whether person p is pointing at person/object q and associate the distance between p
and q with distance category c (Appendix C: Formula 2).

RayHitsObject(p, o, q) Determine whether the ray emanating from person p’s center, and following his orientation o, hits
object q.

ReturnTruthValue(v) When used inside another rule, that rule returns truth value v.

Singleton(p) Determine whether p is a list containing only one element.

SpeedInShortInterval(p, c) Calculate speed of person/object p in a 3 s interval and associate this speed with speed category c
(Appendix C: Formula 15).



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 645

C. Formulas

Source code in logic notation for a substantial part of the rule specifications in Appendix B.

LookingAtNearbyObject(p, q, c) ← LookingAt(p, q) ∧ DistBetweenInnerPerimeters(p, q, c) (1)

PointingAtNearbyObject(p, q, c) ← PointingAt(p, q) ∧ CalcDistBetweenInnerPerimeters(p, q, d)∧ (2)
[c = small ∨(¬LookingDown(p) ∧ c = notLarge) ∨ (¬LookingDown(p) ∧ Type(q, display) ∧ c = any)]∧
AssocDistBetweenInnerPerimeters(d, c)

GroupInShortInterval(p, q, r, s) ← �−1BuildGroup(p, q, r) ∧ BuildGroup(p, q, s) (3)

BuildGroup(p, q, r) ← Filter(q, InSameGroup(p, elem), r ′) ∧ AppendHead(p, r ′, r) (4)

InSameGroup(p, q) ← DistBetweenCenters(p, q, small) ∧ [DiffBetweenOrientationAndAngleToCenter(q, p, small) ∨ (5)
DiffBetweenOrientations(q, p, small) ∨ OrientedAtSame(p, q, r)]

JoiningLeavingGroup(p, q, r, s) ← Intersection(p, q, t) ∧ Difference(q, t, r) ∧ Difference(p, t, s) (6)

LookingAt(p, q) ← p �= q ∧ Orientation(p, op) ∧ RayHitsObject(p, op, q) (7)

PointingAt(p, q) ← p �= q ∧ AbsOrientationOfExtendedArm(p, oarmp ) ∧ RayHitsObject(p, oarmp , q) (8)

AbsOrientationOfExtendedArm(p, oarmp ) ← Orientation(p, op) ∧ ExtendingArm(p, oarm) ∧ o′
armp

= op + oarm∧ (9)
NormalizeAngle(o′

armp
, oarmp )

OrientedAtSame(p, q, r) ← SelectPatient(p, r) ∧ SelectPatient(q, r) ∧ DistBetweenCenters(p, r, notLarge)∧ (10)
DistBetweenCenters(q, r, notLarge) ∧ LookingAt(p, r) ∧ LookingAt(q, r)

DistBetweenCenters(p, q, c) ← CalcDistBetweenCenters(p, q, d) ∧ AssocDistBetweenCenters(d, c) (11)

DistBetweenInnerPerimeters(p, q, c) ← CalcDistBetweenInnerPerimeters(p, q, d) ∧ AssocDistBetweenInnerPerimeters(d, c) (12)

DiffBetweenOrientations(p, q, c) ← CalcDiffBetweenOrientations(p, q, d) ∧ AssocDiffBetweenOrientations(d, c) (13)

DiffBetweenOrientationAndAngleToCenter(p, q, c) ← CalcDiffBetweenOrientationAndAngleToCenter(p, q, d)∧ (14)
AssocDiffBetweenOrientationAndAngleToCenter(d, c)

SpeedInShortInterval(p, c) ← CalcSpeedInShortInterval(p, v) ∧ AssocSpeedInShortInterval(v, c) (15)

CalcDistBetweenCenters(p, q, d) ← Position(p, xp, yp) ∧ Position(q, xq , yq ) ∧ DistBetweenPoints(xp, yp, xq , yq , d) (16)

CalcDistBetweenInnerPerimeters(p, q, d) ← CalcDistBetweenCenters(p, q, dpq ) ∧ Size(p,wp, hp) ∧ Size(q, wq , hq )∧ (17)
MaxAndMin(wp, hp, dpout , dpin

) ∧ MaxAndMin(wq , hq , dqout , dqin
) ∧ d = dpq − 0.5 dpin

− 0.5 dqin

CalcDiffBetweenOrientations(p, q, d) ← Orientation(p, op) ∧ Orientation(q, oq ) ∧ DiffBetweenAngles(op, oq , d) (18)

CalcDiffBetweenOrientationAndAngleToCenter(p, q, d) ← Position(p, xp, yp) ∧ Position(q, xq , yq ) ∧ Orientation(p, op)∧ (19)
DiffBetweenAngles(xp, yp, xq , yq , op, d)

CalcSpeedInShortInterval(p, v) ← �−1Position(p, x−1, y−1) ∧ Position(p, x0, y0) ∧ �1Position(p, x1, y1)∧ (20)
DistBetweenPoints(x−1, y−1, x0, y0, d−1,0) ∧ DistBetweenPoints(x0, y0, x1, y1, d0,1) ∧ v = 0.5 (d−1,0 + d0,1)

AssocDistBetweenCenters(d, c) , AssocDistBetweenInnerPerimeters(d, c) , AssocDiffBetweenOrientations(d, c) ,
AssocDiffBetweenOrientationAndAngleToCenter(d, c) , and AssocSpeedInShortInterval(v, c) are represented graphically in Appendix D.

DistBetweenPoints(x1, y1, x2, y2, d) ← dx = x2 − x1 ∧ dy = y2 − y1 ∧ d =
√

d2
x + d2

y (21)

DiffBetweenAngles(x1, y1, x2, y2, a1, d) ← AngleBetweenPoints(x1, y1, x2, y2, a2) ∧ DiffBetweenAngles(a1, a2, d) (22)

AngleBetweenPoints(x1, y1, x2, y2, a) ← dx = x2 − x1 ∧ dy = y2 − y1 ∧ Atanoid(dx , dy , a) (23)

DiffBetweenAngles(a1, a2, d) ← MaxAndMin(a1, a2, amax , amin) ∧ d ′ = amax − amin ∧ NormalizeAngle(d ′, d) (24)

InShortInterval(C) ← [�100%−2,2 Call(C) ∧ ReturnTruthValue(1.0) ∧ !] ∨ [�80%−2,2Call(C) ∧ ReturnTruthValue(0.8) ∧ !]∨ (25)

[�60%−2,2Call(C) ∧ ReturnTruthValue(0.6) ∧ !] ∨ [�40%−2,2Call(C) ∧ ReturnTruthValue(0.4) ∧ !]∨
[�20%−2,2Call(C) ∧ ReturnTruthValue(0.2)]



646 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

D. Trapezoid truth functions

The trapezoid truth functions (visualizations of the corresponding source code) used by Formulas 11 through 15 in
Appendix C. They associate distances d in cm, differences d in ◦, and speeds v in cm/s to appropriate categories.
As values on the x-axes increase, the truth values V on the y-axes (for the corresponding categories) increase from
0.0 to 1.0, stay constant at 1.0, and then decrease back to 0.0. The categories that are applied in this paper have
boldfaced labels and colored curves.



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 647

E. Example ground-truth with corresponding reasoning results

Example frame with ground-truth annotations (top) and corresponding reasoning results with truth values (bottom),
from the experiment “groups with speaking and listening members”, rendered by the tool described in Section 3.1.3.



648 J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic

References

[1] J.K. Aggarwal and M.S. Ryoo, Human activity analysis: A re-
view, ACM Computing Surveys 43(3) (2011), 16:1–16:43.

[2] J.F. Allen and G. Ferguson, Actions and events in interval tem-
poral logic, Logic and Computation 4 (1994), 531–579.

[3] Y. Aloimonos, G. Guerra-Filho and A. Ogale, The language
of action: A new tool for human-centric interfaces, in: Human
Centric Interfaces for Ambient Intelligence, 2009, pp. 95–131.

[4] M. Arens, R. Gerber and H.H. Nagel, Conceptual representa-
tions between video signals and natural language descriptions,
Image and Vision Computing 26(1) (2008), 53–66.

[5] J.C. Augusto and C.D. Nugent, eds, Designing smart homes,
in: The Role of Artificial Intelligence, Lecture Notes in Artifi-
cial Intelligence, Vol. 4008, Springer, 2006.

[6] A. Aztiria, J.C. Augusto, R. Basagoiti, A. Izaguirre and
D.J. Cook, Discovering frequent user-environment interactions
in intelligent environments, Personal and Ubiquitous Comput-
ing 16 (2012), 91–103.

[7] L. Bacon, L. MacKinnon, A. Cesta and G. Cortellessa, De-
veloping a smart environment for crisis management train-
ing, Journal of Ambient Intelligence and Humanized Comp. 4
(2013), 581–590.

[8] N. Bellotto, B. Benfold, H. Harland, H.H. Nagel, N. Pirlo,
I. Reid, E. Sommerlade and C. Zhao, Cognitive visual tracking
and camera control, Computer Vision and Image Understand-
ing 116(3) (2012), 457–471.

[9] N. Bellotto, Robot control based on qualitative representation
of human trajectories, in: AAAI Symposium on Designing Intel-
ligent Robots: Reintegrating AI, AAAI Technical Report SS-
12-02, 2012.

[10] W. Bohlken and B. Neumann, Generation of rules from ontolo-
gies for high-level scene interpretation, in: Symposium on Rule
Interchange and Applications (RuleML), 2009, pp. 93–107.

[11] O. Brdiczka, Integral framework for acquiring and evolving sit-
uations in smart environments, Ambient Intelligence and Smart
Environments (JAISE) 2(2) (2010), 91–108.

[12] P. Chahuara, A. Fleury, F. Portet and M. Vacher, Using markov
logic network for on-line activity recognition from non-visual
home automation sensors, in: Conference on Ambient Intelli-
gence (AmI), 2012, pp. 177–192.

[13] P. Dai, H. Di, L. Dong, L. Tao and G. Xu, Group interaction
analysis in dynamic context, IEEE Transactions on Systems,
Man, and Cybernetics 38(1) (2008), 275–282.

[14] C. Fernández, P. Baiget, F.X. Roca and J. González, Determin-
ing the best suited semantic events for cognitive surveillance,
Expert Systems with Applications 38 (2011), 4068–4079.

[15] C. Fernández, P. Baiget, F.X. Roca and J. González, Aug-
menting video surveillance footage with virtual agents for in-
cremental event evaluation, Pattern Recog. Lett. 32(6) (2011),
878–889.

[16] C. Filippaki, G. Antoniou and I. Tsamardinos, Using constraint
optimization for conflict resolution and detail control in activ-
ity recognition, in: Conf. on Ambient Intelligence (AmI), 2011,
pp. 51–60.

[17] Y. Fischer and J. Beyerer, Defining dynamic bayesian networks
for probabilistic situation assessment, in: Conference on Infor-
mation Fusion (FUSION), 2012, pp. 888–895.

[18] R. Gerber and H.H. Nagel, Representation of occurrences for
road vehicle traffic, Artif. Intelligence 172(4–5) (2008), 351–
391.

[19] C. Geib, Delaying commitment in plan recognition using com-
binatory categorial grammars, in: International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2009, pp. 1702–1707.

[20] S. Gong and T. Xiang, Recognition of group activities using
dynamic probabilistic networks, in: International Conference
on Computer Vision (ICCV), 2003, pp. 742–749.

[21] S. Gong and T. Xiang, Visual Analysis of Behaviour, From Pix-
els to Semantics, Springer, 2011.

[22] J. González, D. Rowe, J. Varona and F.X. Roca, Understanding
dynamic scenes based on human sequence evaluation, Image
and Vision Computing 27(10) (2009), 1433–1444.

[23] B. Gottfried and H. Aghajan, eds, Behaviour Monitoring and
Interpretation, Smart Environments, Ambient Intelligence and
Smart Environments, Vol. 3, IOS Press, 2009.

[24] C. Gouin-Vallerand, B. Abdulrazak, S. Giroux and A.K. Dey,
A context-aware service provision system for smart environ-
ments based on the user interaction modalities, Ambient Intel-
ligence and Smart Environments (JAISE) 5(1) (2013), 47–64.

[25] A. Gupta, P. Srinivasan, J. Shi and L. Davis, Understanding
videos, constructing plots, learning a visually grounded story-
line model from annotated videos, in: Conference on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 2012–2019.

[26] M. Hanheide, A. Peters and N. Bellotto, Analysis of human-
robot spatial behaviour applying a qualitative trajectory calcu-
lus, in: Symposium on Robot and Human Interactive Commu-
nication (RO-MAN), 2012, pp. 689–694.

[27] M. Henson, J. Dooley, A. Al Malaise Al Ghamdi and L. Whit-
tington, Towards simple and effective formal methods for in-
telligent environments, in: Conference on Intelligent Environ-
ments (IE), 2012, pp. 251–258.

[28] J. IJsselmuiden and R. Stiefelhagen, Towards high-level hu-
man activity recognition through computer vision and temporal
logic, in: German Conf. on Artificial Intelligence (KI), 2010,
pp. 426–435.

[29] J. IJsselmuiden, A.K. Grosselfinger, D. Münch, M. Arens and
R. Stiefelhagen, Automatic behavior understanding in crisis re-
sponse control rooms, in: Conference on Ambient Intelligence
(AmI), 2012, pp. 97–112.

[30] Y. Ivanov and A. Bobick, Recognition of visual activities and
interactions by stochastic parsing, Pattern Analysis and Ma-
chine Intelligence 22(8) (2000), 852–872.

[31] A. Kembhavi, T. Yeh and L. Davis, Why did the person cross
the road (there)? Scene understanding using probabilistic logic
models and common sense reasoning, in: European Confer-
ence on Computer Vision (ECCV), 2010, pp. 693–706.

[32] K.M. Kitani, Y. Sato and A. Sugimoto, Recovering the ba-
sic structure of human activities from noisy video-based sym-
bol strings, Pattern Recognition and Artificial Intelligence 22
(2008), 1621–1646.

[33] D.I. Kosmopoulos, N.D. Doulamis and A.S. Voulodimos,
Bayesian filter based behavior recognition in workflows al-
lowing for user feedback, Computer Vision and Image Under-
standing 116(3) (2012), 422–434.

[34] F. Krüger, K. Yordanova, C. Burghardt and T. Kirste, Towards
creating assistive software by employing human behavior mod-
els, Ambient Intelligence and Smart Environments (JAISE) 4(3)
(2012), 209–226.

[35] G. Lavee, E. Rivlin and M. Rudzsky, Understanding video
events: A survey of methods for automatic interpretation of se-
mantic occurrences in video, IEEE Transactions on Systems,
Man, and Cybernetics 39(5) (2009), 489–504.



J. IJsselmuiden et al. / Automatic understanding of group behavior using fuzzy temporal logic 649

[36] B. Ley, V. Pipek, C. Reuter and T. Wiedenhoefer, Support-
ing improvisation work in inter-organizational crisis manage-
ment, in: Conference on Human Factors in Computing Systems
(CHI), 2012, pp. 1529–1538.

[37] Z. Lu, J.C. Augusto, J. Liu, H. Wang and A. Aztiria, A system
to reason about uncertain and dynamic environments, Artificial
Intelligence Tools 21(5) (2012).

[38] S. McKeever, J. Ye, L. Coyle, C. Bleakley and S. Dobson, Ac-
tivity recognition using temporal evidence theory, Ambient In-
telligence and Smart Env. (JAISE) 2(3) (2010), 253–269.

[39] V. Morariu and L. Davis, Multi-agent event recognition in
structured scenarios, in: Conference on Computer Vision and
Pattern Recognition (CVPR), 2011, pp. 3289–3296.

[40] D. Münch, K. Jüngling and M. Arens, Towards a multi-purpose
monocular vision-based high-level situation awareness system,
in: Workshop on Behaviour Analysis and Video Understanding
@ ICVS, 2011.

[41] D. Münch, J. IJsselmuiden, M. Arens and R. Stiefelhagen,
High-level situation recognition using fuzzy metric temporal
logic, case studies in surveillance and smart environments, in:
Workshop on Analysis and Retrieval of Tracked Events and
Motion in Imagery Streams (ARTEMIS) @ ICCV, 2011.

[42] D. Münch, J. IJsselmuiden, A.K. Grosselfinger, M. Arens and
R. Stiefelhagen, Rule-based high-level situation recognition
from incomplete tracking data, in: Symposium on Rules, Re-
search Based and Industry Focused (RuleML), 2012.

[43] H.H. Nagel, Steps toward a cognitive vision system, AI Maga-
zine 25(2) (2004), 31–50.

[44] F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg and A. Saffiotti, A
constraint-based approach for proactive, context-aware human
support, Ambient Intelligence and Smart Environments (JAISE)
4(5) (2012), 347–367.

[45] P. Rangel, J.G. Carvalho Junior, M.R. Ramirez and
J.M. de Souza, in: Context Reasoning Through a Multiple
Logic Framework Conference on Intelligent Environments
(IE), 2010, pp. 116–121.

[46] M. Ryoo and J. Aggarwal, Semantic representation and recog-
nition of continued and recursive human activities, Computer
Vision 82 (2009), 1–24.

[47] A. Sadilek and H. Kautz, Location-based reasoning about com-
plex multi-agent behavior, Artificial Intelligence Research 43
(2012), 87–133.

[48] J. Shell and S. Coupland, Towards fuzzy transfer learning for
intelligent environments, in: Conference on Ambient Intelli-
gence (AmI), 2012, pp. 145–160.

[49] Y. Shi, Y. Huang, D. Minnen, A. Bobick and I. Essa, Propa-
gation networks for recognition of partially ordered sequential
action, in: Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2004, pp. 862–869.

[50] J.M. Siskind, Grounding the lexical semantics of verbs in vi-
sual perception using force dynamics and event logic, Artificial
Intelligence Research 15(1) (2001), 31–90.

[51] A. Skarlatidis, G. Paliouras, G.A. Vouros and A. Artikis,
Probabilistic event calculus based on markov logic networks,

in: Symp. on Rules, Research Based & Industry Focused
(RuleML), 2011.

[52] T. Springer and A.Y. Turhan, Employing description logics in
Ambient Intelligence for modeling and reasoning about com-
plex situations, Ambient Intelligence and Smart Environments
(JAISE) 1(3) (2009), 235–259.

[53] K.A. Tahboub, Intelligent human-machine interaction based on
dynamic bayesian networks probabilistic intention recognition,
Intelligent and Robotic Systems 45 (2006), 31–52.

[54] H.J. ter Horst and A. Sinitsyn, Structuring reasoning for inter-
pretation of sensor data in home-based health and well-being
monitoring applications, Ambient Intelligence and Smart Envi-
ronments (JAISE) 4(5) (2012), 461–476.

[55] Z.O. Toups, A. Kerne and W.A. Hamilton, The team coor-
dination game: Zero-fidelity simulation abstracted from fire
emergency response practice, ACM Transactions on Computer-
Human Interaction 18(4) (2011), 23:1–23:37.

[56] S. Tran and L. Davis, Event modeling and recognition using
markov logic networks, in: European Conference on Computer
Vision (ECCV), 2008, pp. 610–623.

[57] P. Turaga, R. Chellappa, V. Subrahmanian and O. Udrea, Ma-
chine recognition of human activities: A survey, Circuits and
Systems for Video Technology 18(11) (2008), 1473–1488.

[58] T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, Activ-
ity recognition using semi-markov models on real world smart
home datasets, Ambient Intelligence and Smart Environments
(JAISE) 2(3) (2010), 311–325.

[59] T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, Hi-
erarchical activity recognition using automatically clustered
actions, in: Conference on Ambient Intelligence (AmI), 2011,
pp. 82–91.

[60] S. Vishwakarma and A. Agrawal, A survey on activity recogni-
tion and behavior understanding in video surveillance, in: The
Visual Computer, 2012, pp. 1–27.

[61] V.T. Vu, F. Bremond and M. Thonnat, Automatic video inter-
pretation: a novel algorithm for temporal scenario recognition,
in: Conf. on Artificial intelligence (IJCAI), 2003, pp. 1295–
1300.

[62] J. Xiang, J. Tian and A. Mori, Goal-directed human activ-
ity computing, Ambient Intelligence and Smart Environments
(JAISE) 3(2) (2011), 127–145.

[63] B.Z. Yao, X. Yang, L. Lin, M.W. Lee and S.C. Zhu, I2T: Im-
age parsing to text description, Proceedings of the IEEE 98(8)
(2010), 1485–1508.

[64] J. Ye and S. Dobson, Exploring semantics in activity recog-
nition using context lattices, Ambient Intelligence and Smart
Environments (JAISE) 2(4) (2010), 389–407.

[65] J. Ye, S. Dobson and S. McKeever, Situation identification
techniques in pervasive computing: A review, Pervasive and
Mobile Computing 8(1) (2011), 36–66.

[66] D. Zhang, D. Gatica-Perez, S. Bengio and I. McCowan, Mod-
eling individual and group actions in meetings with lay-
ered HMMs, Transactions on Multimedia 8(3) (2006), 509–
520.


