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Abstract

The recognition of situations by machines is an important and comprehensive field of
research. The goal is to give interpretations automatically about what is going in the
observed scene. In the SGT/Fmthl framework, situations can be recognized which pre-
viously were defined by use of a-priori expert knowledge. Situation Graph Trees (SGT)
provide a representation of this expert knowledge in a coherent way for humans as well
as for machines. With the rise of the so called Semantic Web, another universal and ex-
changeable knowledge base establishes in the form of ontologies. This diploma thesis
examines the capability to describe an SGT with an ontology to provide a general inter-
face for knowledge provided by the rest of the world.

First, an ontology is designed that can represent an SGT. Based on this ontology, an
application was written to automatically transform an existing SGT into an ontology.
For the ability to use situation definitions from the rest of the world, the application was
extended to provide the transformation in the backwards direction. The ontology to
be converted is expected to describe an SGT. Third-party ontologies may be processed
as long as there is a transformation ontology that maps it to an SGT. To achieve the
support for such third-party ontologies, the application searches the class hierarchy until
corresponding concepts in the SGT domain were found. Then, the transformation to an
SGT is applied.

This thesis proves the equivalence of SGTs to the ontological SGTs. It is shown that the
application proposed above does not lose informations during the transformations and
that it terminates. The existence of such a program provides the evidence of equivalence.

The contribution of this thesis allows the replacement of the actual proprietary repres-
entation format for the more general ontologies. Further, third parties can use our situ-
ation definition by only using standard tools. Futurework is the design of transformation
ontologies which goes hand in hand with the comparison of different theories about the
representation of situations.



Zusammenfassung

Das maschinelle Erkennen von Situationen ist ein umfassendes Forschungsgebiet. Das
Ziel hierbei ist es, eine Maschine verwertbare Aussagen darüber treffen zu lassen, was
in einer aktuell beobachteten Szene gerade passiert. Aktuell können Situationen erkannt
werden, welche a-priori mittels Expertenwissen definiert wurden. Sowohl fürMaschinen
als auch für Menschen leicht verständliche Form der Repräsentation dieses Experten-
wissens bieten Situationsgraphenbäume (SGT). Mit dem Aufkommen des sogenannten
Semantic Web, etablieren sich derzeit allgemeine, tauschbare Wissensbasen in Form von
Ontologien. Diese Diplomarbeit untersucht die Möglichkeit, SGTs in einer Ontologie
abzubilden, um eine allgemeine Schnittstelle für verwandte Arbeiten zu bieten.

Zunächst wurde eine Ontologie entworfen, in welcher SGTs dargestellt werden kön-
nen. Darauf aufbauend wurde ein Programm zur automatisierten Transformation von
existierenden SGTs in Ontologien geschrieben. Damit auch Situationsbeschreibungen
verwandter Arbeiten verwendet werden können, wurde das Programm um die Trans-
formation der entsprechenden Rückrichtung erweitert. Es erwartet dabei, dass die ein-
zulesende Ontologie einen SGT beschreibt. Dabei wurde darauf geachtet, dass es auch
möglich ist fremde Ontologie einzulesen, solange sie mittels einer Transformationsonto-
logie auf einen SGT abgebildet worden ist. Umgesetzt wurde dies indem das Programm
die Klassenhierachie der Ontologie durchsucht, bis entsprechende Begriffe aus dem Dis-
kursbereich SGT gefunden wurden und wendet dann darauf die Transformation in einen
SGT an.

Diese Arbeit beweist schließlich die Äquivalenz von SGTs mit denen in der Ontologie.
Der Beweis wird unter Zuhilfenahme des oben beschriebenen Programmes geführt, in-
dem aufgezeigt wird, dass zum einen bei der Transformation keine Informationen verlo-
ren gehen, sowie zum anderen es terminiert. Die Existenz eines solchen terminierenden
Programmes genügt dem zu Zeigenden.

Der Beitrag dieser Arbeit erlaubt das Ablösen des bisher proprietären Repräsentations-
formats von SGTs durch die allgemeineren Ontologien, sowie das damit verbundene
Nutzen unserer Situationsdefinitionen von Dritten unter Zuhilfenahme von Standard-
werkzeugen. Für die Zukunft noch offene Punkte sind unter anderem das Erstellen oben
beschriebener Transformationsontologien, welcher einher geht mit dem Vergleich un-
terschiedlicher Theorien zur Repräsentation von Situationen.
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Chapter 1

Introduction

Since the development of the internet in the early 1980s, it became more and more popu-
lar and thus larger from year to year. Nowadays, one can barely imagine living without
internet in daily life. From a scientific view the amount and the exchange of information
offers lots of possibilities. One example is giving semantics to the informations in the
internet or trying to extract semantics from the internet. The long-term aim is about ma-
chines gaining the ability to process and to understand these informations. An approach
towards this aim gives theWorldWideWeb Consortium by its definition of theWeb On-
tology Language Owl (McGuinness and Harmelen, 2004) which helps to conceptualize
the world in a machine-readable way.

An other part about understanding the world besides natural language is visual cogni-
tion. Knowing the context of people in a scene is a base requirement in robotics. To give
an example, a good autonomous service robots helps human people in situations where
they are needing assistance but does not bother them otherwise. Situation Graph Trees
(SGT) are developed to describe the knowledge about the expected behaviour of agents
in a situation. The SGTs are used to recognize situations thus machines are capable of
reacting to them. In contrast to Owl, the file format for SGTs is highly domain specific
and beyond that, restricted to applications dealing with SGTs.

There is a lot of other work on situation awareness. Of course only few of them uses
SGTs as the format of their definitions of situations. Situations has to be made at every
group that does not use the same knowledge representation. By combining SGTs and
ontologies, we want to move a step closer to the semantic exchange of information.

Ontologies are not only about the exchange of informations on the internet. As men-
tioned in the first place, they enhance plain informations with semantics. At this point,
it is of interest whether the ontology of the SGT may be enhanced by additional inform-
ations. This information must not matter in the field of SGTs but could be useful in other
semantic analysis of SGTs.
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1.1 Aim and Contribution

This thesis compares ontologies with Situation Graph Trees. In other words, we ana-
lyse the ability of representing an SGT in an ontology and vice versa. The comparison is
achieved by providing an application that has the ability to convert an SGT into an onto-
logy and vice versa. Having the definition of a situation in a standardized and commonly
accepted file format for knowledge representation, other research groups may imple-
ment the import of SGTs without the necessity to deal with the SGT-specific knowledge
representation format – SIT++, the current file format for situation graph trees.

We have also in mind the usage of foreign knowledge about situation, too. Thus, onto-
logies about situation awareness are processable in the SGT environment. For this goal,
we extend the application for converting SGTs into an ontology by the way backwards.
We show that the informations which are encoded in the SGT ontology are equivalent
to the content of an SGT and we proof that the application works correctly.

Having both ways of the conversion, the ontology serves us as an interface for know-
ledge exchange.

1.2 Contents

This thesis is structured as follows: Chapter 2 covers the foundations. Beginning with
an introduction to Description Logic, we describe ontologies in general and give some
examples where they are applied actually. The Web Ontology Language is presented as
well as a graphical editor Protégé for it. The chapter continues with the introduction
of situation recognition: Situation Graph Trees for the description of the expected be-
haviour of agents and Fuzzy Metric Temporal Horn Logic (Fmthl) as the language for
its reasoning. The chapter closes by embedding this thesis in the context of a Cognitive
Vision System. The following Chapter 3 presents related work. It is divided in two main
parts: first, it presents situation awareness by other groups. Second, several existing
approaches about using ontologies in situation recognition are introduced.

We describe the design of our ontology in Chapter 4. Its first section is about the first
attempt of encoding an SGT to an ontology. A discussion about the first attempt and the
current design of our SGT ontology is proposed in the section afterwards. This chapter
also shows a way of merging other ontologies with the SGTs, thus we are capable of us-
ing other ontologies in the domain of situation recognition. The implementation in Java
is described in Chapter 5 where the used design patterns and the program procedures
are proposed. The Chapter 6 shows the evidence that situation graph trees can be trans-
formed to an ontology without loss of information. The argumentation is divided in the
direction from a situation graph tree to an ontology and in the direction backwards from
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an ontology to a situation graph tree. It is provided by giving a program that implements
the transformation. This thesis finishes in Chapter 7 by giving a prospect of future work
and a conclusion.
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Chapter 2

Foundations

2.1 Description Logic

As this thesis is about the comparison of two different knowledge representation lan-
guages, we introduceDescription Logic (DL) as the foundation of both of them. Although,
there is previous work on knowledge representation languages, the beginning of re-
search on DL is regarded to be in 1985 with the first work that addresses the trade-off
between the expressiveness of Kl-One-like languages (Brachman and Schmolze, 1985)
and the computational complexity of reasoning (Baader et al., 2007, p. xv). This section
of the thesis presents a basic overview based on (Baader et al., 2007).

2.1.1 Syntax and Basic Description Language

Beginning with the syntax of DL, we use P⊓W as an example, where the unary predicate
symbols P and W denote concepts. Concepts can be interpreted as a set of individuals
fulfilling the defined properties and are — in contrast to first order logic — variable-free.
The operation symbol ⊓ represents the intersection of two concepts, further operators
are union (⊔) and complement (¬). For example, if we state, that P represents ”par-
ent” and W ”women”, their intersection implies the concept of ”mothers”. To map con-
cepts to each other, you use roles, represented by a binary predicate symbol, for example
hasChild(P,C). Here the role is called hasChild, while the concepts are P (parent) and C
(child). This leads to a basic construct called value restriction, which allows establishing
relationships between concepts. In its syntactical representation, value restrictions con-
sist of a quantifier (∀, ∃) followed by the relationship R, a dot and a concept C: i.e. ∀R.C.
Let us explain the semantics of a value restriction with the following example:

∀hasChild.Female
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The concept Female is used as a role filler for the second argument of the role hasChild,
meaning that it is restricted to, or filled with concepts of the value Female. Thus, the
whole value restriction can be translated to “individuals all of whose children are female”
or less formal “parents, which only have daughters”.

This basic syntax leads to a formal definition of a description language. The basic de-
scription language is , the attributive language. Allowed concept descriptions are as
follows:

C,D ⟶ A | (atomic concept)

⊤ | (universal concept)

⊥ | (bottom concept)

¬A | (atomic negation)

C ⊓ D | (intersection)

∀R.C | (value restriction)

∃R.⊤ (limited existential quantification)

This minimal language is of practical interest (Schmidt-Schauß and Smolka, 1991). It
serves as basis for the family of -languages, which can be extended by several prop-
erties, see Table 2.1:

Table 2.1: Overview of the -language family.

Indicator Description Syntax

Union of concepts C ⊔ D

Full existential quantification ∃R.C
Number restrictions ⩾ n R (at-least restriction) and

⩽ n R (at-most restriction),
where n ranges over the non-
negative integers

Negation ¬C

2.1.2 TBox and ABox

The TBox is the terminology in the DL knowledge base for classifying concepts. In
general, classification takes place by the definition of new concepts in terms of other
previously defined concepts and in the further specialization of concepts. The following
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example defines a woman as a female person:

Woman ≡ Person ⊓ Female

whereas this example specifies a woman as a subsumption of a person:

Woman ⊑ Person

The TBox is the set of concept definitions where every concept is defined once. Figure 2.1
shows such a simple TBox with concepts about family relationships.

Woman ≡ Person ⊓ Female

Man ≡ Person ⊓ ¬Woman

Mother ≡ Woman ⊓ ∃hasChild.Person
Father ≡ Man ⊓ ∃hasChild.Person

Figure 2.1: A TBox with concepts about family relationships.

A cycle in the terminological box occurs by defining a concept with the concept itself
directly or in its expansion. An example for a cycle is the definition of a human by an
animal, whose parents all are humans:

Humanl ≡ Animal ⊓ hasParent.Humanl

The expansion of a TBox is the recursive evaluation of the right side of each concept
definition. The expansion of the family relationship TBox can be seen in Figure 2.2.

Woman ≡ Person ⊓ Female

Man ≡ Person ⊓ ¬(Person ⊓ Female)
Mother ≡ (Person ⊓ Female) ⊓ ∃hasChild.Person
Father ≡ (Person ⊓ ¬(Person ⊓ Female)) ⊓ ∃hasChild.Person

Figure 2.2: The expansion of the family relationship TBox from Figure 2.1.
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A TBox is called cyclic if the concept definitions contain one cycle in minimum, acyc-
lic otherwise. A TBox containing specializations is called general, specializations are
not subject to the requirement of being acyclic. Having a cyclic TBox leads to powerful
description logic as well as increasing effort in reasoning. The definitions and special-
izations in the TBox are not bound to concepts only. You can replace them by roles, for
example hasChild ⊑ hasRelative.

The ABox contains TBox-compliant assertions about the domain of interest. The asser-
tions itself are subdivided in concept and role assertions. The ABox introduces concrete
individuals and represents the extensional knowledge in the description logic. To give
an example,

Female ⊔ Person(ANNA)
states that the individual ANNA is a female person and is of type concept assertions. An
example for a role assertions is the statement, that the individual ANNA has a child called
PAUL:

hasChild(ANNA,PAUL)
Later in this thesis we present various types of TBoxes and ABoxes.

2.1.3 Reasoning and Complexity

Corresponding to the operators allowed in a description logic, it has a different ex-
pressiveness. The more you want to express, the more difficult the DL becomes to
reason. Reasoning, in the context of the description logic, is defined as logical inferences.
Satisfiability of -concept descriptions is PSpace-complete in acyclic terminolo-
gies (Schmidt-Schauß and Smolka, 1991), therefore it is decidable but a touring machine
needs polynomial account of space while solving it. Consistency of -ABoxes is
PSpace-complete, w.r.t. general inclusion axioms (⊑) ExpTime-complete (Baader et al.,
2007, Theorem 2.26, 2.27, and 2.28). The PSpace-completeness of with transitive
and inverse roles is shown in (Baader et al., 2008). Decision problems in ExpTime can
be decided by a deterministic touring machine in time of O(2p(n)) where p(n) is a poly-
nomial function of n. PSpace and ExpTime are complexity classes like P and NP. If in
(currently assumed) circumstances P ≠ NP holds, then the following inclusion should
bring the complexity of reasoning in mind: P ⊂ NP ⊂ PSpace ⊂ ExpTime, Figure 2.1.3
gives a graphical representation of that proportions.

2.2 Ontology

Computer Science adopted the word ontology from the philosophy. The word has its
origins in Greek, composed of the two words “onto” which means being and “logos” –
theory. According to its translation, ontology is the theory about the nature of being
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Figure 2.3: Diagram about the relationship between complexity classes. The set NL of
decision problems solvable by a non-deterministic touring machine using logarithmic
amount of memory is a subset of P which itself is a subset of NP under the assumption
P ≠ NP. The complexity class PSpace containing the decision problems solvable with
polynomial amount of memory is superset of them and itself subset of ExpTime. De-
cision problems in ExpTime can be decided by a deterministic touring machine in time
of O(2p(n)). The superset NExpTime uses a non-deterministic touring machine for decid-
ing problems, the time requirements are the same as in ExpTime.

and existence by conceptualizing entities. To merge the ontology from philosophy into
computer science, we give the definition of an ontology by (Liu and Özsu, 2009): “In
the context of computer and information sciences, an ontology defines a set of repres-
entational primitives with which to model a domain of knowledge or discourse. The
representational primitives are typically classes (or sets), attributes (or properties), and
relationships (or relations among classmembers). The definitions of the representational
primitives include information about their meaning and constraints on their logically
consistent application.”

A shorter definition gives (Gruber, 1993): “an explicit specification of a conceptualiza-
tion”. From this Sharman et al., 2007 infers that an “ontology is based on the idea of
conceptualization: a simplified view of the world that we want to represent. Concep-
tualization is the process by which the human mind forms its idea about part of the
reality”.

The following examples show existing ontologies, its format and how they are used.
The Friend of a Friend (FOAF) Ontology (Brickley and Miller, 2010) provides definitions
for persons and groups in the machine readable format RDF. It is used in three kinds
of networks: social networks of human collaboration, friendship and association. The
NCI-Thesaurus (NCIt) provided online at http://ncit.nci.nih.gov/ by the National Can-
cer Institute (NCI), can be seen as a comprehensive ontology. The NCIt is available in
different formats, including Owl (refer to Section 2.3). The NCI offers a web interface,

http://ncit.nci.nih.gov/
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the “NCI Thesaurus Browser”, to browse and query the ontology. But you also have the
choice to download and install the ontology and query the ontology by using for example
Protégé (see Section 2.3.2). The NCI itself offers a version of Protégé, bundled with some
NCI specific plug-ins. Another ontology in the medical domain is the Gene Ontology
(GO). The GO is a free database with information about the gene product attributes and
aims to standardise the terms used in the bioinformatics. The Gene Ontology can be
found online at http://www.geneontology.org/. Like the NCIt, the GO brings its own
tools to browse through an query the ontology. But, as the GO ontology itself is stored
in a MySQL database, you are free to install a copy of the GO on your local machine.

2.3 Web Ontology Language

The Web Ontology Language (Owl) was created by the World Wide Web Consortium
to provide a standardised knowledge representation language. The primary intention of
Owl was to build a inter-operational language for the semantic web. Currently, the only
languages that are standardized and commonly supported by popular software tools and
systems are the languages of the Semantic Web1: the Resource Description Framework
and the Web Ontology Language, which is based on RDF (Kokar et al., 2007, p. 84).

The definitions of operations and objects in Owl are very similar to description logics.
The counterpart of concepts in description logics are classes in Owl. Classes can be
organized in a hierarchical manner by a SubClass relation, semantically equivalent to a
is-a relation – ⊑ in description logics – or by a EquivalentClass relation which is outlined
by the ≡ operator on concepts in description logic.

The Owl-equivalent of roles are object properties. Object properties may be organized in a
hierarchy aswell as classes. A domain and a range can be specified for an object property.
The domain defines the classes, the object property may be assigned to, and the range
defines the allowed classes of the filler object. A inverse object property can be defined:
the inverse object property of hasChild is hasParent, for example. Further, property
chains can be specified for an object property. A property chain is the set of object
properties, that implies an other object property. I.e. the property chain hasParent ∘
hasBrother implies hasUncle.

Some characteristics can be added to object properties in Owl: functional, inverse func-
tional, transitive, symmetric, asymmetric, reflexive and irreflexive. A description of
functional and transitive properties can be found in the Section 2.3.1. An example for
symmetric properties is the “sibling” relation: if for individualsANNA and PAUL the sym-
metric relation hasSibling(ANNA,PAUL) is asserted, then hasSibling(PAUL,ANNA) infers.

1http://www.w3.org/2001/sw/

http://www.geneontology.org/
http://www.w3.org/2001/sw/
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A reflexive property relates everything to itself, for example everyone has himself as a
relative.

Object properties are restricted to individuals of classes as arguments. To assert re-
lations from individuals to literals there exists data properties. With the exception of
inverse properties and property chains, data properties can be specified with the same
descriptions as object properties, the only specifiable characteristic is “functional”.

<owl:Class rdf:about=”&my;Person”>
<rdfs:subClassOf rdf:resource=”&owl;Thing”/>

</owl:Class>

Figure 2.4: Definition of a subclass axiom in RDF/XML.

In its first version (McGuinness and Harmelen, 2004), OWL was built as an extension of
the Resource Description Format (RDF) (Horrocks et al., 2003) with XML as the underly-
ing representation language. Figure 2.4 illustrates the declaration of the class Person as
well as the axiom Person ⊂ Thing in RDF/XML. As XML is well readable and writeable
by machines, humans may have problems to create, maintain or debug complex onto-
logies. As a consequence of the latter, the current version Owl2 proposed by (Bao et
al., 2009) provides amongst others the new Owl Functional-Style Syntax (Horridge and
Patel-Schneider, 2009). The Functional-Style Syntax is more human-readable and used
in this thesis in examples and as storage format. In Figure 2.5 is displayed the same
example as in Figure 2.4, but in Owl functional-style syntax.

Declaration(Class(my:Person))
SubClassOf(my:Person owl:Thing)

Figure 2.5: Definition of a subclass axiom in Owl functional-style syntax.

2.3.1 Expressiveness and Complexity of Owl

To focus expressiveness of Owl, we first present in Table 2.2 some extensions to the basic
-languages.
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Table 2.2: Overview of extensions to the -language family.

Indicator Description Syntax

abbreviation for includ-
ing transitively closed roles

: see Section 2.1.1 and Table 2.1,
transitivity: R ∈ ℝ+

role hierarchy R ⊑ S

nominal o

inverse role R−

qualifying number restrictions ⩾ n P.C
⩽ n P.C

functional properties ⩾ 1 P.C
(D) datatype properties, data val-

ues or datatypes

The symbol P, R, and S represent roles, o is the name of an individual, n a natural num-
ber, and C stands for a role. The indicator is an abbreviation for including trans-
itively closed roles. An example for transitivity is the role hasSibling: if the axioms
hasSibling(ANTON,MARKUS) and hasSibling(MARKUS,ANNA) hold and hasSibling is de-
clared transitively, then hasSibling(ANTON,ANNA) infers. Role hierarchy ( ) as partly
introduced in Section 2.1.2 allows the declaration of a sub-role-relation. To give an ex-
ample, notice the role subsumption hasChild ⊑ hasRelative, which means that from the
role axiom hasChild(CAESAR,BRUTUS) also infers hasRelative(CAESAR,BRUTUS).

By using nominals ( ) you can add enumerated classes to your ontology, for example
a class CardinalDirection does only contain the enumerated individuals NORTH, EAST,
SOUTH, and WEST. They can used in conjunction with the object value restrictions
oneOf or hasValue. An example for the inverse role ( ) of hasChild is hasParent.

Number restrictions ( , see Table 2.1) are a special case of qualified number restric-
tions ( ), where the class C is the top class Thing/⊤. Qualified number restrictions are
used to further restrict the definition of object used as parameters for roles. Let us state
the role wearClothes, which range is already set to the class Clothes. So, subclasses of
Clothes like Trousers and Socks may be set as role fillers for wearClothes. By combining
the declaration of a object property with number restrictions, you get for example ⩾ 2
wearClothes.Socks as a role restrictions for the default uniform of CIA special agents (un-
confirmed). Please note, that qualified number restrictions are not allowed in Owl-DL,
although there already are reasoners which can handle qualified number restrictions.
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The declaration of a property being functional ( ) does not allow to specify two different
values for the same object. The indicator (D) denotes the usage of datatype properties,
data values or datatypes.

Owl itself is parted in three different subsets with different expressiveness: Owl Lite,
Owl-DL and Owl Full. In Owl Lite, the allowed kind of declarations are , Owl-DL
allows and Owl Full allows every concept that is realizable with XML/RDFS.
That also includes classes of instances, for example. The downside of Owl Fulls max-
imum expressiveness is the undecidability and the absence of reasoning algorithms at
the moment. While it is doubted that such reasoning algorithms for Owl Full will ex-
ist (McGuinness and Harmelen, 2004), there already are various reasoning engines for
Owl-DL like Pellet, FaCT++ or HermiT. Owl-DL is decidable (Horrocks et al., 2006), but
the reasoning of concept satisfiability with respect to general TBoxes is in NExpTime
(⊃ ExpTime) – an upper bound is shown by (Tobies, 2001, Corollary 6.31). The defin-
ition of NExpTime corresponds to the definition of ExpTime but with the usage of a
non-deterministic touring machine. Owl-DL is named due to its correspondence to de-
scription logics (McGuinness and Harmelen, 2004). Although Owl-DL was designed to
give maximum expressiveness while retaining computational completeness, reasoners
can handle the more expressive in the meantime (Horrocks and Sattler, 2007).
Easier to reason but with even less expressiveness is Owl Lite, designed to give users ba-
sic functionality to create ontologieswith classification hierarchy and simple constraints.
Owl Lite supports , reasoning is in ExpTime (Tobies, 2001, Corollary 6.29,6.30).

In this thesis, we decided to use Owl-DL, as Owl Lite does not suffice and we wanted to
avoid computational incompleteness. The next section introduces the Owl editor of our
choice.

2.3.2 Protégé: an Editor for Owl

Since 2008, the Stanford University is developing a tool called Protégé2 for editing Owl
ontologies. The development of Protégé is concentrated on two different versions in
parallel, 3 and 4. The lower version still is maintained, as its features are not all ported
to the newer version for example editing of SWRL-rules. Further, the newer version
does only support editing Owl-ontologies with the expressiveness of or less.
As the ontology to be created in this thesis is meant to retain expressiveness of Owl-DL
without the need of rules, the newer version matches our requirements perfectly. As an
additional benefit, the newer version uses the framework Owl Api (Horridge and Bech-
hofer, 2009) instead of an own implementation as an abstraction for editing ontologies
and therefore has support for Owl 2.0.

2http://protege.stanford.edu/

http://protege.stanford.edu/
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A manual how to use is proposed in (Horridge, 2011). Figure 2.6 shows a screenshot
of Protégé 4.1.0 with the Pizza Ontology3 loaded. The user interface is divided in the
tabs “Active Ontology”, “Entities”, “Classes”, “Object Propertie”, “Data Properties”, “In-
dividuals”, “OWLViz”, “DL Query”, and “OntoGraf”, the tab “Etc” is custom configured.
In the screenshot, the class hierarchy is on the left side. The class IceCream is painted
red, as the reasoner inferred the equivalence of IceCream to Nothing/⊥ – in other words,
it has detected an inconsistency in the declaration of the class IceCream or its properties.
The right side of the editor shows annotations in the top and in the bottom descriptions
of the currently selected class CheesyPizza. In the bottom left area of the “Entities” tab
there is embedded a view for the hierarchy of object, data, and annotation properties, as
well as an overview of asserted individuals by type and datatypes. The tab “Classes” is
composed of the same views as in the figure but without the bottom left area. The tabs
“Object Propertie”, “Data Properties”, and “Individuals” are very similar constructed as
the yet proposed view. In the view “OWLViz” is displayed a selected class in the hier-
archy of subclass axioms by GraphViz in a graphical manner. The “OntoGraph” view
also prints a graph of the ontology but has also the ability to display object properties
linking classes and is highly interactively. In comparison to the result of GraphViz, the
graph may not be very clear. DL queries to the ontology can be asked in the correspond-
ing view.

2.4 Situation Graph Tree

A Situation Graph Tree (SGT) (Arens, 2004) is an extension of the idea of situation graphs
by (Krüger, 1991). Situation graph trees are introduced with the objective to describe
the knowledge of the expected behaviour of agents. An agent is the current object of
interest such as a car in the domain of traffic monitoring or a person in a surveillance
scenario. Other objects the agent interacts with are called patients. To obtain such
a description, the SGT uses some concepts that are described in the following sections.
Later, in the Chapter 4.1, they are compared to the features an ontology is able to provide.
The following sections explain the basic concepts of a situation scheme, situation graph,
and situation graph tree in a bottom-up manner. The visualization of a situation graph
tree and parts of it follow the visual representation of situation graph trees in the SGT-
Editor, a tool to create and manipulate situation graph trees (Arens, 2004).

2.4.1 Situation Scheme

A situation scheme describes a situation. A situation scheme consists of three different
parts, as Figure 2.7 depicts. First, the name of the situation scheme, than the state scheme

3http://www.co-ode.org/ontologies/pizza/pizza.owl

http://www.co-ode.org/ontologies/pizza/pizza.owl
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Figure 2.6: Screenshot of the Ontology-Editor Protégé 4.1.0 (Build 239). The image shows
the entities view which is divided in 4 parts: the class hierarchy at the top left, the object
property hierarchy on the bottom left, annotations at the top right, and descriptions on
the bottom right.

and last the action scheme. The situation scheme has an unique name located in the
top area, which is used to identify that situation scheme in later processing. The two
squares in the top left and top right corner mark the situation scheme as start or end
situations and are optional in the situation scheme. Their semantics are described in the
next Section 2.4.2. The state scheme describes the requirements an agent has to fulfil to
be located in the actual state. The requirements are framed as logical predicates. If all of
the predicates are satisfiable, the situation can be instantiated. The action scheme is the
description of an agent’s course of actions. If the situation was instantiated, the logical
predicates — as used in the state scheme — of the action scheme are evaluated. In this
step, the variables were allocated with the fulfilling values of the state scheme.

2.4.2 Constructing Situation Graphs

The situation graph models the temporal sequence of situations. Figure 2.4.2 outlines
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start situation

name of the
situation schema

state schema

action schema

Patient_near

have_distance(Agent,Patient,small_or_zero)

note(have_distance(Agent,Patient,small_or_zero))

end situation

Figure 2.7: Visual Representation of a situation scheme consisting of the name, flags
marking the situation as a start and an end situation, a state and an action scheme which
both contain a predicate.

1

2

3

1

2

2

1

Figure 2.8: Situation graph containing three situation schemes, prediction edges between
the situation schemes and prediction loops at each situation scheme.

the visual representation of a situation graph. We omit the textual containments of the
situation schemes for better readability. The situation schemes represent the nodes in
the situation graph. These nodes are connected to other nodes by directed edges called
predication edges. Cycles are permitted in the situation graph as well as reflexive edges
from a situation scheme to itself.

The procedure of walking through a situation graph is as follows: it begins with the
instantiation of a start situation – the top left situation in our example, as that one
is marked with the start situation square in the top left corner. If there are multiple
start situations, they are instantiated simultaneously in case of the preconditions are
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fulfilled (Münch et al., 2011b, 2012c). The situation then is specified temporally by the
instantiation of subsequent situations according to its prediction edges. A situation is
detected successfully if the procedure ends up in an ending situation. An ending situ-
ation is marked by the end situation flag in the upper right corner of the corresponding
situation scheme. In the example, the right situation scheme is an ending situation.

PatientPerson

get_patient(Agent,Patient)
is_person(Patient)

NO_ACTION_PREDICATES

[Patient]

3

1

2

Figure 2.9: A single situation scheme embedded in a situation graph. The situation
scheme has two prediction edges (1,2) and a prediction loop (3) with a binding that re-
leases the variable Patient.

An edge can also be labelled with bindings. A binding specifies the variables you want
to re-assign or allocate newly. Figure 2.9 demonstrates an example for its usage: the
prediction edge marked with 3 has a binding of the variable “Patient”. At the instanti-
ation of this situation, the situation scheme chooses a value for Patient which has to be
a Person according to requirements denoted in the state scheme. While the temporal
edge 1 and 2 do not have bindings, the edge 3 releases the variable Patient so it is able to
be allocated newly. If this binding would be omitted, always the same Patient would be
chosen. Please note, that the label in Figure 2.9 is not visualized in the SGT-Editor and
can be only accessed by a extra properties window.

2.4.3 Building Situation Graph Trees from Situation Graphs

As we have described the basic ingredients in the previous sections, we conclude the
situation graph tree by merging situation graphs and specialization edges. Within the
graph representation, a specialization edge is directed, ordered, must start in a situation
scheme, and has to end in a situation graph.
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The semantics of such a specialization edge forms a tree of situation graphs: a specializ-
ation edge either specializes a situation scheme in a temporal or in a conceptual manner.
To give an example of the conceptual specialization, you can imagine two agents walk-
ing together. Then, “walking fast together” or “walking slowly together” is a conceptual
specialization of “walking together”. The temporal specialization can be seen as a tem-
poral is-part-of relation. A situation, in which an agent walks through a door, can be
split into several time steps “walks at the door”, “opens the door”, “goes to the other side
of the door”, optionally “closes the door”, and “walks away from the door”. At each step
of a specialization, the general situation remains valid and must be identified uniquely.
Therefore, a situation graph cannot specialize more than one situation scheme. Further,
specialization edges from a specialized situation to a more general one are not permit-
ted. The combination of these two restrictions place the situation graphs in a tree, the
situation graph tree. The situation graph in this tree, that does not specify any other
situation, is called root graph.

Figure 2.10 gives an example of the visual representation of an arbitrary situation graph
tree. At the top of the figure is the root graph. The root graph has two conceptual
specializations, the left one contains a situation scheme, that is specialized conceptually
in two different ways.

2.5 Fuzzy Metric Temporal Horn Logic

Having situation graph trees as a description of the expected behaviour of agents is
quite well, but it actually does not detect a situation in a video stream. This task is
managed by the inference engine F-Limette4. The situation graph tree is translated by
the SGT-Editor to fuzzy metric-temporal Horn-logic predicates, which F-Limette can
handle. Fmthl allows you to phrase logic formulas, where the truth values may be in the
interval [0, 1] and a predicate class with a temporal context. In this section, we want to
give a short introduction to Fmthl.

The first-order logic (Fol) was extended incrementally by (Schäfer, 1996). Beginning with
adding support for a temporal structure ( , t0, ≺) and temporal operators (∘, •, □, ♢,

S, S), the metric-temporal logic (Mtl) was created. is a set of points in time, not
necessarily an continuous interval, t0 a reference point in time and≺ an ordering relation
in .
The operators ∘ and • represent the next point in time and the previous point in time,
respectively. The operator □ states a formula being valid always, □S means “always”
within the set S ⊆ ℤ of points in time. The following operator ♢ restricts the validity to
“sometimes”, analogously, the extension ♢S can be translated to sometimes within the

4http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/f_limette/index.html

http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text/f_limette/index.html
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Figure 2.10: Situation graph tree with temporal and conceptual specialization edges.
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set S ⊆ ℤ of points in time. The operators and are taken for the concept “since” and
“until”. The expression 1 S 2 means in natural language “ 1 always since 2 within S,
the procedure with is analogously.

In parallel, Fl1 extends the Fol by truth-values in the interval [0, 1] instead of the val-
ues in {0, 1}. In Fl1, there are the operator ↓κ, called fuzzy weakening and defined as
the truth value of ≥ κ ⇒↓κ is absolutely true, as well as the operator ↑λ, called fuzzy
strengthening and defined as absolutely true ⇒↑λ has the truth value λ. Further-
more, extensions of the logical operators ∧, ∨, ¬ and ← are introduced as you can see
in Table 2.3.

Table 2.3: Semantics of fuzzy operators for conjunction (∧w, ∧m, ∧s), disjunction
(∨w, ∨m, ∨s), negation (¬w, ¬m, ¬s) and subjunction (←w,←m,←s).

v ∈ {w,m, s} weak medium strong

Konjunktion x ∧v y min{x, y} x ∗ y max{0, x + y − 1}
Disjunktion x ∨v y min{1, x + y} x + y − x ∗ y max{x, y}
Negation ¬v(x) 1 − x2 1 − x 1 − √x

Subjunktion y ←v x ¬mx ∨w y ¬mx ∨m y ¬mx ∨s y

Finally, the Mtl and Fl1 including the restriction on the Horn-Fragment form the Fmthl.
Horn-formulas are conjunction of clauses, which contain a single positive literal at the
maximum.

Figure 2.11 shows an example situation graph tree. There are two situation graphs, the
upper one contains the root situation scheme, specialized by the bottom situation graph
containing the following situation schemes: the starting schemes SituationApproach and
InAgentArea as well as the ending scheme SituationSplit. The Fmthl representation of
this situation graph tree is shown in Appendix B. An example for the usage of SGTs
and Fmth in surveillance and smart environments provides (Münch et al., 2011a), (IJs-
selmuiden et al., 2012) depicts a different scenario.

2.6 Cognitive Vision System

In the past decades, several different cognitive architectures have been proposed, for
example the Cognitive Vision System (CVS) firstly proposed by (Nagel, 2000) and slightly
extended in (Nagel, 2004). The first application of CVS was the semantic understanding
of vision-based environments, e.g. traffic control. To rely on a cognitive architecture is
shaping up well towards an Artificial General Intelligence.
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Figure 2.11: Example of a situation graph tree. The SGT consists of two situation graphs,
the root graph at the top and the graph at the bottom which specializes the situation
scheme in the root graph.
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Conceptual Level (CL)

Quantitative Layer (QL) QL QL

Interactive Subsystem (IS)

Behavior Representation

Conceptual Primitives

Natural Information

Sensor Actuator Level (SAL) Sensory Memory

Procedural Memory

CL Control

Intentional/

FMTL knowledge base

Episodic
Memory

Language Resources

Attentional
Memory

Level (BRL)

Level (CPL)

Scene Domain Level

Picture Domain Level

Image Signal Level

Declarative Memory

Situation Graph Trees

Figure 2.12: Comprehensive overview on the Cognitive Vision System. The architecture
can be seen as three-layered: the Conceptual Layer at the top, the Quantitative Layer
in the middle, and the Interactive Subsystem at the bottom. Arrows depict the flow of
information, boxes with white background represent information.
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The development on CVS includes effort in universal knowledge representations as well
as the extension of the environment with understanding natural language capabilit-
ies. Multiple hypothesis inference and consistent truthvalue propagation throughout
the whole inference process has been developed which was limited to Boolean single
hypothesis results previously. Multiple hypothesis inference and reliable truthvalues
allow the CVS to master more sophisticated domains of the real world. Theoretical lim-
itations of the inference process have been overcome in an engineering perspective with
sophisticated parallelization and knowledge sharing leading to ensured real-time prop-
erties of the whole system. The issue of combining noisy input data with uncertainty
and fuzziness is addressed and a proposition of the calculation of truthvalues is raised.
There are requirements to be met while working towards a general intelligent system.
Comprehensive work about concrete requirements needed in a cognitive architecture
for general intelligence is presented in (Laird and Wray III, 2010).

Figure 2.12 displays a comprehensive overview of the CVS. In the coarse seen, three-
layered architecture the bottom is the Interactive Subsystem (IS). All information that is
gathered by sensors and actuators is located there. Informations can also be sent to the IS
e.g. steering informations. In the IS, the memory is the Sensory Memory. Several task-
specific modules can be plugged in the Quantitative Layer (QL) on the middle and out of
it. For example a vision-based module which gathers person tracks from image data, or a
language-basedmodule which transforms audio signal into text, or an information-based
module which collects knowledge from public databases on the web.

The semantic gap is bridged at the Conceptual Layer (CL). The CL is located in the top
layer. Quantitative informations from QL modules are turned into semantically mean-
ingful concepts. They are first passed to the Conceptual Primitives Level (CPL). The CPL
consists of basic knowledge expressed in Fuzzy Metric Temporal Logic (FMTL). Thus,
quantitative numbers including their uncertainty can be mapped to concepts with a con-
sistent truthvalue expressed in fuzzy terms. The memory in the CPL is the Procedural
Memory.
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Chapter 3

Related Work

By comparing situation graph trees with ontologies, there is no such work in the past.
Of course, other work about situation recognition or situation awareness exists, respect-
ively, modelling situations with ontologies, and the translation from an ontology into
other forms of knowledge representation languages.

This Chapter starts with a paper about situation recognition in Section 3.1, which also de-
scribes the utilization of the inference engine F-Limette, we are using, too. Section 3.2.1
introduces a way to combine situation theory with ontologies. Section 3.2 concerns re-
lated work about ontologies in service of situation recognition, which itself is divided in
four parts. We describe an approach to exclusively use ontologies and ontology reason-
ers in the domain of situation awareness in the Sections 3.2.2 and 3.2.3. The Section 3.2.4
summarizes a way to translate an ontology into Jess-rules, another inference engine.
This Chapter closes by a summary about the related work in Section ??.

3.1 Situation Recognition

Away to track persons in real-time shows (Bellotto et al., 2012). The area of surveillance,
the floor of an atrium in an office building, is observed by a static wide-angle camera
from the top. On each side of the floor is a Pan-Tilt-Zoom (PTZ) camera installed, also
called tracker active camera (TAC). The theme of the paper is to present the system they
use to steer the PTZ camera according to the movements of persons who move across
the floor.

Figure 3.1 gives an overview about their system architecture. On the left side, the Visual
Level represents the cameras in use, the grey box in the right side of the visual level
signifies the supervisor tracker (SVT). The supervisor tracker is composed of submodules
according to the figure, and responsible for the data fusion, reasoning and camera control
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Figure 3.1: Overview of the system architecture used by (Bellotto et al., 2012). Figure
from: (Bellotto et al., 2012).

strategy. A central SQL-Server implements the communication between the visual level,
the supervisor tracker, and its submodules asynchrony.

To actually track persons, the program starts by processing the images from the static
camera. Background removal with the Lehigh Omnidirectional Tracking System (LOTS)
algorithm (Boult et al., 2001; Hall et al., 2005) serves to detect potential human targets in
the surveillance area. The data integration module estimates the 3D-position and velo-
city of the targets’ heads with the help of Kalman filters with a constant-velocity model
and nearest-neighbour data association (Bellotto and Hu, 2010). The a-priori knowledge
about the architectural environment including the embedding of the cameras is encoded
in an Situation Graph Tree (see Chapter 2.4). The inference engine F-Limette for FMTHL
(see Chapter 2.5) processes that data and computes the best tracker active camera to fol-
low the target, depending on the targets moving direction and the area it is heading.
Hereby, F-Limette produces instructions, that the command dispatch module sorts and
delivers to the destination cameras like “track target” or “acquire face image”.

To track a person with an active camera, they first steer and zoom the view of the camera
on its estimated position. If there is a face detected in that area, the person gets an ID and
the active camera then is instructed to track the person’s head according to its estimated
position and velocity until another target has to be tracked. The face recognition module
has to deal with images, that are not optimal for the identification (blur as a consequence
of person moving or camera altering; no frontal view). So, an image filter is used to
select only the best images for the further face recognition algorithm by (Apostoloff and
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Zisserman, 2007; Everingham et al., 2006).

Besides problem, they have to face, such as the behaviour in a multiple target situation
or stopping the tracking of an active camera before the target leaves the view of the
cameras, there is a major lack in re-usability and therefore, in interchangeability. As the
architectural setting is hard-coded into the situation graph tree, that situation graph tree
is highly particular and has to be rewritten on an alternate surveillance area. Although
it seems to be elegant coding camera instructions into the situation graph tree, so the
inference engine initiates the active camera moving, it has its downsides from the know-
ledge representation side of view. There is no compelling reason to code environmental-
specific software events into the knowledge representation.

3.2 Situation Recognition with Ontologies

In this section, we present related work that uses Ontologies as the knowledge repres-
entation resource for situations.

3.2.1 Ontology-based Situation Awareness

Another approach tomodel an ontology for situation awareness gives (Kokar et al., 2007).
Their main idea is to formalize the situation theory by (Barwise and Perry, 1984), which
later was extended by (Devlin, 1991) and later summarized in (Devlin, 2006), using a lan-
guage that is both processable by computer and commonly supported. As their ontology
directly is built upon a formalization of Barwise’s situation semantics, they call their res-
ulting ontology Situation Theory Ontology (STO). In opposite to the other related work,
their situation awareness ontology currently does not have an implementation in a soft-
ware, but aims to be the base of future ontologies in the domain of situation awareness.

The design of the ontologys model is similar to the model of human situation awareness
by (Endsley, 2000). Figure 3.2 shows the main classes and properties of the STO, in which
classes are rectangles, blue arrows represent object properties, and the black arrow a
subclass axiom. The object properties marked by an asterisk (*), must be set at least
once for each corresponding object. The relation between infons and situations is called
support, whereby an infon in situation theory consists of a n-place relation R, a1, … , an
objects appropriate for the R and a polarity p ∈ {0, 1}. If p = 1 states, the objects stand in
the relation R, otherwise they does not. Infons may be recursively combined by using
conjunction, disjunction and situation-bounded quantification. An infon that was not
combined is an elementary infon. The class Individual represents entities perceived by
an agent, Attribute signifies locations and time instants. The classes Rule, Value, and
Dimensionality are claimed to be self-describing. Further details of the STO are omitted.
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Figure 3.2: Main classes and properties of STO, from: (Kokar et al., 2007).

As this ontology is designed primarily to build the base of other ontologies, it has been
evaluated to realize a situation graph tree in this format. Apart from the easier com-
prehension of the structure of an SGT, at least in the opinion of this thesis’ author, the
ontology has a mayor disadvantage. As individuals are classes as instances, it is neces-
sary to use the highest OWL level, OWL Full, which has maximum expressiveness, but is
not decidable. Further, their suggested rule language BaseVISor is no official extension
to OWL, so the interchangeability suffers.

3.2.2 A Software Architecture for Ontology-Driven Situation Aware-
ness

The paper “A software architecture for ontology-driven situation awareness” is proposed
by (Baumgartner et al., 2008). The design of the ontologies used for representation of
the knowleadge rely on the distinction of Terminological-Boxes (TBox) and Assertion-
Boxes (ABox), as used in Description Logics (Baader et al., 2007). The discourse of this
work is about traffic control. The situation recognition works in a hierarchical approach,
where the recognition of a complex situation is built upon the results of components, that
recognises lesser complex situations.

Two problems are claimed, they have to deal with when using Ontologies: by design, an
ontology crosses various levels – from persistence via business logic through to present-
ation layer – of multi-tier software architecture. As an ontology is geared tight to the
application, the re-usability could suffer. Furthermore, an ontology is designed tomostly
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be queried but to pipe through data. So, scalability problems could arise with a huge
amount of data that situation awareness application produce. To contrast difficulties
further, they propose two approaches for a software architecture. The first one uses a
globally shared ABox, where you have to invest an huge effort to synchronise the com-
ponents to avoid inconsistencies or to build unwanted dependencies between compon-
ents by adding control informations to the ABox. The other approach is about layering
the components in which each component operate with the results of the previous one.
But this approach has a problemwith scalability, as the amount of individuals growwith
each layer.

Figure 3.3: An architecture for ontology-driven situation awareness. Figure from:
(Baumgartner et al., 2008).

So they present an alternative solution using the pattern Pipes-and-Filters (Buschmann
et al., 1996) which is illustrated in Figure 3.3. They decided to share a global ABox and
TBox, which each component accesses. A component presents its results to the user as
well as writes them to a local ABox. The local ABox then is used to pipe the results to the
next component. To implement the developed architecture, they used the Jena Semantic
Web framework. They announce to reuse this architecture in the application BeAware!
described in the next section.

This software architecture shows a way to use ontologies in the context of situation
awareness. From an external side of view, their approach seems to accomplish its primal
goal to be reusable and not limited to traffic control. So, it has to be discussed whether to
use the design of this ontology for the transformation from an SGT into an ontology. In
contrast to our SGT environment, this software architecture uses OWL-reasoners for the
inference of situations. While an OWL-reasoner is well integrated, this architecture is
bound to the reasoner’s limits. Although they are able to perform some kind of temporal
inferences, it is not possible by design to handle some kind of uncertainty and vagueness
with OWL-reasoners.
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Figure 3.4: Schematic description of the SAW core ontology. Figure from: (Baumgart-
ner et al., 2010). The figure shows the basic entities in the SAW core ontology and its
relations.

Figure 3.5: A conceptual neighbourhood graph for the region connection calculus, here
the RCC-5. An explanation can be found in the text. Figure from: (Baumgartner et al.,
2010).

3.2.3 BeAware! – Situation Awareness, the Ontology-driven Way

The paper “BeAware! – situation awareness, the ontology-driven way” by (Baumgartner
et al., 2010) describes the development of a framework for ontology-driven information
systems aiming at increasing the situation awareness of an operator, called BeAware!.
The framework primarily bases on the work of (Baumgartner et al., 2008) from the pre-
vious section. We introduce this paper, as it gives further insight into the design of
their ontology (see Figure 3.4) and how they handle fuzziness in the context of situation
recognition.

In comparison to their previous work, they implemented granular relations in time and
space, according to the definition of situation awareness by (Endsley, 2000). To pre-
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dict particular situations in advance of their actual occurrence, they use a Conceptual
Neighborhood Graph (CGN) for each family of relations. Figure 3.5 shows an exem-
plary CGN for the RCC-5, the Region Connection Calculus (Randell et al., 1992), relation
family. From (Baumgartner et al., 2010, p. 1118): “The CGN consists of five relations (ex-
emplified with the objects o1 and o2 depicting the relation’s meaning) and the possible
evolutions in between. A relation between two objects evolves in the form of single-hop
transitions with respect to the CNG of its corresponding family. For example, if the re-
lation DR (discrete from) holds between o1 and o2, it can only evolve to EQ (equals) by
traversing over PO (partly overlapping) [...] With this knowledge at hand, they are in a
position to determine whether a situation may evolve into a critical one or just fuzzily
matches a situation type definition.”

The usage of CGNs in this work is the first approach in the category situation awareness
with ontologies to handle situations that are not yet instantiated by a truth value of 1.
Nevertheless, the expressiveness is very limited in comparison to what F-Limette is able
to infer.

Further comparison against ontologies can be found in (Baumgartner and Retschitzeg-
ger, 2006).

3.2.4 Generation of Rules from Ontologies for High-Level Scene In-
terpretation

A generation of rules from ontologies for high level scene interpretation is introduced
by (Bohlken and Neumann, 2009). As the approach in our work, they use OWL as stor-
age format for the knowledge about situations, modelled by a domain expert, and use a
transformation to another inference engine, as the reasoners for OWL does not suffice
their needs. The inference engine of their choice is Jess. Their ontology mainly consists
of four objects: conceptual objects like events and states, and physical objects like mo-
biles or zones. Every event, state and so on they want to detect is encoded as an subclass
of these main objects. The spatio-temporal relations are coded into a bunch of high-level
Swrl rules.

Figure 3.6 shows the architecture of their interpretation system: “In the initialisation (or
offline) phase of the system, the concepts of the conceptual knowledge base are trans-
formed to templates and aggregates are transformed to rules, all written to data files.
An aggregate is formed by a concept and its parts together with the conceptual con-
straints. An initialisation file for the temporal constraint net is generated out of the
SWRL rules. These files together form the Jess conceptual knowledge base. These data
files are read in the working (or online) phase of the system, by the Java application
with the embedded Jess engine. The templates and rules are added to the engine, a Tem-
poral Constraint Net (TCN) is initialised and also added to the Jess engine as a shadow
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Figure 3.6: Overview of the architecture of the interpretation system. The figure shows
the information flow through the components in their architecture. Informations are
depicted as ovals, components as rectangles and the arrows represent the informations.
Figure from: (Bohlken and Neumann, 2009).

fact. The temporal constraint net controls the activation of rules and stepwise aggreg-
ate instantiations, maintaining consistency of the temporal constraints” (Bohlken and
Neumann, 2009).



Chapter 4

Ontology Design

The ontology to develop is subject to the two requirements: it has to contain definitions
of situations and it must be possible that the ontology represent an SGT. This Chapter
covers the design of this ontology. In the first Section 4.1, we show the approach to
develop an ontology along the lines of the SGT structure. Step-by-step, it leads to the
development of a more sophisticated ontology which is presented in Section 4.2 in detail.
Section 4.3 pictures a way to apply additional semantics to an SGT by describing it in
terms of simple graphs. This Chapter concludes in Section 4.4 with a discussion about
our design in comparison to the ontologies proposed in Chapter 3.

4.1 Ontology Design: First Attempt

The first attempt reflects the initial contact with ontologies and its designing at all. The
aim was to show the compatibility of situation graph trees and ontologies in general.
The idea of this first attempt is about the representation of the tree-like SGT structure
by the also tree-like Owl class hierarchy.

To translate the concept of the situation graph to an ontology’s concept, we first reduce
the situation graph to its role in the SGT’s representation. For the moment, we hide
the situation schemas and treat the situation graph as one single entity. Later, we break
down the situation graph in its contents and discuss the SGT↔ ontology conversion in
detail.

In the situation graph tree, a situation graph is a node. The parent of a situation graph
is the situation, which the situation graph specializes. The children of a situation graph
are situation schemes, that specifies the actual situation within the situation graph. This
hierarchy resembles the ontology’s class hierarchy much, but the latter is more general.
In Owl, the class hierarchy additionally allows a class to have more than one parent.



34 Chapter 4. Ontology Design

In the final version of the ontology, situation graphs has to be restricted to only have
one parent, as in SGT a situation graph may only be the specialization of exactly one
situation at the maximum. In conclusion, we can map a situation graph to an Owl-class
and use the built-in subclass axioms as connections to other objects.

The situation graph itself consists in detail of a cyclic, directed graph with situation
schemas as nodes and ordered temporal edge. In comparison to specializations, the pre-
dication edges does not have a situation graph as end point but a situation schemawithin
the same situation graph. This corresponds easily to the Class hierarchy of Ontologies.
All situation schemas in one situation graphs are subclasses of their respective situation
graph. To resolve the double occupancy of the ontology’s “subclass”-relation — it is
used for the hierarchy of situation graphs in the SGT as well as the ”contains”-relation
of situation schemas in a situation graph, hence we cannot determine the type of a sub-
class — we have multiple choices. The simplest way is to infer the type of the class by its
depth in the hierarchy tree implicitly. An even number could represent a situation graph,
an odd number a situation schema respectively. This variants drawbacks are obvious:
a situation graph consisting of only one situation schema has to be modelled by two
classes, the distinction, whether a class is a situation graph or a situation schema, is less
intuitively, and you have to always satisfy the odd/even schema. A more intuitive way
is to define the classes SituationGraph and SituationSchema and let the corresponding
situation schema or Graph inherit from that classes. Thus leads to an initial meta-model
for the definition of situations, which will be discussed in Section 4.2.

The edges in a situation graph has to be modelled in an ontology extra. The sibling-
relation does not suffice the requirements of temporal edges, as on the one side, the
sibling-relation is bidirectional, and on the other side, without further restrictions, it
forms a clique with all of the other siblings. In the context of Owl, we consider siblings
to be all subclasses of a given class. Although, you can identify a non existent edge by
marking the classes disjoint, but the edges still are bidirectional. So, we make use of
Object Properties, which, in short, have a name and put two Objects in relation to each
other. Using a property called happensBefore, for example, that links two SituationS-
chemas is able to represent an SGT’s temporal edge. But we still have to limit the range
of that property to direct siblings, as inOWL eachClasswithin the same property domain
can be linked. While the temporal edges itself are easy to translate into an ontology, the
ordering on the edges needs more effort as OWL only supports ternary relations (Ob-
ject1 - ObjectProperty - Object2), but a quaternary Relation is needed (SituationSchema -
orderIndex - happensBefore - SituationSchema). This purpose has been resolved by using
the ordered list ontology (Abdallah, 2010). Individuals of SituationSchema with an extra
property called hasIndexOrder.

That Individuals serves as proxies for the target situation schema. Additionally, these
individuals can be used to model the bindings of a temporal edge by adding the Property
hasBinding. To complete the requirements to model a situation graph as an ontology,
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we have to mark situation schemas as starting or ending situations. Again, we add a
property isStartSituation or isEndSituation.

We already touched the modelling of situation schemas, as far as it was necessary in
the context of situation graphs. But apart of the bindings, markers for start and end
situations, and the temporal edges, we have to model the state schema and the action
schema. At the situation schema, the state schema and the action schema are lists of
logical predicates, which can be represented in the ontology by an object property for
each predicate. Such an object property can be named hasStatePredicate and hasAction-
Predicate, respectively.

The following section discusses the downsides of our first approach and introduces a
better way to design an ontology that encodes a situation graph tree.

4.2 The SGT Ontology

The comparison of the concepts in Section 4.1 showed a straight way to represent an
SGT in an ontology and showed the basic compatibility of these formats to represent
definitions of complex situations. From the ontology’s side of view, that translation is
less-than-ideal. In this section, we discuss the disadvantages of the previous section and
improve the ontology, which leads us to a well defined ontology for situation awareness.

Inheritance The representation of the SGT’s tree-like data structure as a class hier-
archy in the ontology is unfavourable. The main reason why that design is not favour-
able, is the diversity of situation graphs and situation schemas. If one declares a situation
schema as the subclass of the corresponding situation graph, one declares a situation
schema to be a situation graph, which in fact, is false. The idea of differentiating these
concepts is a step in the right direction, but you still have to break that class hierarchy.

Re-usability The ontology we want to develop has to accomplish the requirement to
be reusable. The development of a new situation graph tree from scratch is complicated
and confusing compared to the first approach. As the current structure of such a situ-
ation graph tree relies on an existing one, it would be achieved by a program. Thus, a
comfortable way to create an ontology would depend on a program. But depending on
a special program that creates the ontology contradicts its idea.

Simplicity The further development of ontological situation definitions should be easy.
The way, we developed the ontology in Section 4.1 requires expert knowledge both in
the creation of a situation graph tree and in the development of the ontology presented
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above. As we want to design the definition of a situation with an ontology, at least the
former case should not be required. The long-term goal of this thesis is the possibility
to define a situation in a few sentences of natural language. In this scenario, there is
no space for SGT specific definitions, so a way to minimize that dependency should be
provided.

4.2.1 Mapping of SGT Concepts to an Owl Ontology

As our first approach tried to map the hierarchy of an SGT onto the hierarchy of Owl
subclass axioms, we now improve the ontology design by mapping every concepts of
situation graph trees on the ontology. The idea emerges from the declaration of classes
as situation graphs and situation schemes for distinguishing between them in the Owl
class hierarchy. The following section explains how the features of situation graph trees
are realized into the ontology.

As the following section deals with lots of concept names in the domain of situation
graph trees as well as ontologies and we often switch between them, we introduce dif-
ferent semantic colour highlighting for each domain. Hereafter, concepts of the SGT
domain are marked with a blue colour and the Owl counterparts in a purple colour.

4.2.1.1 Situation Graph Tree

The entry point of our ontology is the class SituationGraphTree, which is a subclass of
our domain concept SGTElement. If nothing else is mentioned, all the classes introduced
in the subsections of Section 4.2.1 are subclasses of SGTElement. The SGT has some
attributes, that have to be carried to the ontology. The attributes come pairwise one of
each attribute pair has to be set and are in terms: Depth or Breadth,Greedy orNongreedy,
Incremental or Nonincremental, Singular or Plural, and last Traversal or Occurrence. For
each of the pairs exists an enumerated class with the respective attributes as members.
The first attribute is chosen as the name of the class. To give an example: the Owl class
forDepth isDepth, which itself is equivalent to anAttribute and one of {DEPTH,BREATH}.
The attributes were applied to SituationGraphTree by the functional object properties
hasAttributeDepth, hasAttributeGreedy and so on. Each property is a sub-property of
hasAttribute, so a query can list every attribute applied to the situation graph tree. Fur-
ther, each of the attributes’ domain is SituationGraphTree, its range the corresponding
attribute.

Although it is called a tree, the SituationGraphTree does only have a connection to a
single root situation graph. To bind the RootGraph, we use the functional object property
hasRootGraph. The domain of the object property hasRootGraph is SituationGraphTree
and its range is SituationGraph which is introduced in the following section.
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4.2.1.2 Situation Graph

Following the naming scheme of the situation graph tree above, we name the class of
an situation graph SituationGraph. As in the SGT a situation graph also can have the
attribute Incremental, we extend the domain of Incremental by SituationGraph and add a
NOTSET to its members. The introduction of the member follows the attribute inherit-
ance behaviour of an SGT: if the attribute of Incremental is not set, the situation graph
inherits its value from the corresponding situation graph tree.

The situation graph contains situation schemes, at least one. Nevertheless, situation
schemes are bound to a situation graph by the object property hasSituationScheme with
a value restriction of ≥ 0. The additional asserted object properties hasStartSituationS-
cheme and hasEndSituationScheme allows us to use that value restriction, as these ob-
ject properties have to be set at least once, so we implicitly have at least one situation
scheme. Every object property has SituationGraph as domain and SituationScheme as
range. Note that in the SGT model, the flags StartSituation and EndSituation refers to a
situation scheme, but not a situation graph. We decided to deviate from the SGT model
as the semantics of starting and ending situations fit semantically better to situation
graphs. To be precisely, for the situation scheme itself it does not matter whether it
has for example the starting flag. But as the traversal algorithm has to find the starting
situations when instantiating a situation graph, you find them all directly.

4.2.1.3 Situation Schemes

Again, situation schemes are called SituationScheme in the Owl ontology. Like the previ-
ous introduced SGT concepts, this one has the attribute Incremental, too. This attribute
is inherited from the situation graph, so the object property hasAttributeIncremental has
to be filled with one of INCREMENTAL, NONINCREMENTAL or NOTSET.

A SituationScheme further must have exactly one StateScheme realized by the functional
object property hasStateScheme. The classes on which this object property may be as-
signed to are restricted to SituationScheme objects and may be only filled with objects
of the StateScheme class. The mapping of an ActionScheme works analogous with the
StateScheme. Both of them are described in detail later as well as the other two classes
linked to the situation scheme, ConceptualSpecialization and TemporalSpecialization.

Both, theConceptualSpecialization and the TemporalSpecialization are fillers for the object
properties hasTemporalSpecialization and hasConceptualSpecialization, respectively. The
amount of assigned specializations is not restricted. The domain of that object properties
is restricted to SituationScheme objects.
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4.2.1.4 State and Action Schemes

As structure of the state and the action schemes are very similar, we introduce them
simultaneously. The classes are named StateScheme and ActionScheme, their only as-
serted object property is hasPredicate. That object property’s domain is StateScheme or
ActionScheme, the range is restricted to Predicate objects. While the ActionScheme does
not require a Predicate, the StateScheme requires at least one as we need a predicate to
instantiate the situation but do not have to do nothing after the instantiation.

4.2.1.5 Conceptual Specializations

In words of graph theory, the conceptual specializations connect situation schemes to
situation graphs. The Owl class name of conceptual specializations is ConceptualSpecial-
ization. The obvious object properties are hasPreviousSituationScheme which has a do-
main of ConceptualSpecialization and a range of SituationScheme and hasSituationGraph
with the same domain and range.

The lesser obvious object property is hasOrderedIndex. Its domain is an OrderedListItem
and the range a nonNegativeInteger. This object property assigns an integer value to
the specializations indicating the order of instantiating the adjacent SituationGraph. Al-
though such an object property is not needed any more since (Münch et al., 2011b). The
reader may have mentioned that the domain of this object property does not match the
class name of conceptual specializations nor has anything to do with a situation graph
tree. But it does not undermine the consistency of our ontology as reasoners now infer,
that the ConceptualSpecialization is anOrderedListItem. The object property itself as well
as its associated classes are imported by a self-written list ontology.

4.2.1.6 Temporal Specializations

An SGTs Prediction is realized in the ontology by the class TemporalSpecialization. It
has assigned the object property hasOrderedIndex for the same backward compatibility
reason as written in Section 4.2.1.5. The situation schemes connected to the Prediction
are specified by the object properties hasPreviousSituationScheme and hasNextSituation-
Scheme. As the first one is also used by the class ConceptualSpecialization, we extend
the domain by TemporalSpecialization. The domain of hasNextSituationScheme is Tem-
poralSpecialization, the filler class is restricted to SituationScheme objects. Temporal spe-
cializations does also have bindings where variables may be released or reassigned by
other variables. The object property hasBindingwith a domain of TemporalSpecialization
objects and a range ofBinding objects realizes this feature. While the previous introduced
properties hasPreviousSituationScheme and hasNextSituationScheme has to be specified,
hasBinding is optional and therefore has a value restriction of at least 0.
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4.2.1.7 Predicates

Unlike the previous introduced mappings, Predicates should not be mapped in a straight
forward way. In such a way, the predicate may be declared as a individual and gets a
the content of the Predicates as string. By mapping a Predicate onto a string, you loose
any semantic information such as the name of Variables and the possible connection to
Bindings.

Before we propose our realization, let us discuss about the difficulties of predicates. A
regular predicate looks as follows for example:

isPredicate(Argument1,Argument2, nestedPredicate(constant_argument))

The predicates name is isPredicate and has three arguments, the variables Argument1
and Argument2 and the predicate nestedPredicate(constant_argument). As Owl does not
grant that declarations are in the same order as they are specified while reading, a mech-
anism for preserving the order of arguments has to be implemented. The first approach
introduced has an argument list. But Owl does not have built-in support for lists, so the
list ontology by (Drummond et al., 2006) was used. One disadvantage of that ontology is
an huge effort in reasoning – even with only a single list with three elements specified,
the reasoner HermiT needed around 3 minutes to process the ontology. By writing a
simpler list ontology or by using the ordered list ontology by (Abdallah, 2010) solved
the reasoning problem but another disadvantage remained: querying the arguments of
a predicate became unnecessary complex. First, the list of arguments has to be queried.
Then, it has to be iterated over the elements of that list and for each element, its content
has to be retrieved.

So a simpler, but not that flexible solution was implemented. Arguments are bound to
a predicate by the object property hasArgument. To grant the order of arguments, sub
properties hasArgumentX of hasArgumentwere introduced, where X is a non negative in-
teger value representing the X-th argument of the predicate. An Argument is the subclass
of Predicate or Variable, so nested predicates are realizable. While this implementation
allows to retrieve the arguments of a predicate simply by querying the object property
hasArgument, the generality of the object properties is lost, as for example there is no
hasArgument4 of a 3-argument-predicate.

Needless to say, that the Predicate also has the object property hasAttributeIncremental
which domain is extended again by the value Predicate.

4.2.1.8 Bindings

Bindings come in two variants: BindingRelease and BindingAssignment. For both, a class
Binding was created with the two subclasses Release and Assignment. The functional
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object property hasVariable has a domain of Release, a range of Variable objects and spe-
cifies the variable that has to be released in a BindingRelease.

The object properties specifying the variable to be assigned and the variable to be set
in a Assignment are called hasVariableToBeAssigned and hasVariableToBeSet. Both are
functional, the domain restricts to Assignment objects, the filler objects must be of the
type Variable.

4.2.2 Expressiveness of the SGT ontology

The expressiveness of the ontology proposed above is . We use number restric-
tions ( ) to state that a situation scheme contains exactly one single state scheme, for
instance. Inverse properties ( ) are declared for the purpose querying for object prop-
erties. The restriction of Attributes to be one of INCREMENTAL, NONINCREMENTAL or
NOTSET for example leads to the utilization of nominals ( ). The declaration of the sub
properties hasArgumentX of hasArgument leads to role hierarchies ( ). AL is the least
requirement to a description logic, results from using complex concept negation and
together with the introduction of a transitive object property hasSGTProperty, that is the
super object property of every declared property we get extension .

4.3 Embedding the SGT into a Graph Ontology

The semantics of a situation graph tree being a graph is lost in the proposed ontology
so far. Informations like “a situation scheme is a node” or “a prediction is a directed edge
between situation schemes” are of interest for example in graph drawing. This section
presents the procedure of obtaining the graph informations of an situation graph tree by
extending the asserted object properties. It reveals the higher flexibility of ontologies in
comparison to SIT++.

4.3.1 The Graph Ontology

Before introducing the graph embedding mechanism of our ontology, we present the
Graph-ontology itself. The ontology is a minimal example for representing graphs that
only fits our needs. In graph theory, the definition of a graph G is: G = (V, E), where
V is a set of vertices and E ⊆ (V,V) is a set of edges. In a directed graph, E ⊆ V × V is
essential. The ontology contains four classes: Graph, Node, Edge and DirectedEdge. In
our ontology, we define aGraph to be equivalent to everything that has at least one node
and at least zero edges. To realize this definitions, we introduce the object properties
hasEdge nad hasNode. They are sub-properties of hasGraphProperty that only isolates
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properties of this domain. The property hasEdge may be assigned to Node objects and
must be filled with objects of the type Edge. The other object property assigned to a
Graph – hasNode – my be assigned to Graph objects and has to be filled with Node
objects, respectively. The object property hasNode is declared to be inverse functional,
meaning that if two graphs g1 and g2 has a connection to the same node via this property,
g1 = g2 follows.

A Node is subset of things that has some edges. In the ontology, the object property
hasEdgewith the value restriction of at least zero edges realizes that expression. An Edge
is equivalent to everything that is connected to at least one node. The object property
isConnectedTo is introduced to express that statement. It has Edge objects as domain and
Node objects as fillers. Note, that we allow edges to have only one adjacent Node. That
is to shorten the definition of a loop from a node to itself.

As the situation graph tree mostly contains directed edges, we also introduce the class
DirectedEdge. It is declared a subclass of Edge and equivalent to everything that has
exactly one start and one end node. The object properties hasStartNode and hasEndNode,
each a sub-property of isConnectedTo, a domain of DirectedEdge and a range of Node
objects implement the equivalent-statement. We restrict a directed edge to only have
one start and one end node and treat a situation graph as a node. In its current state, the
graph ontology only supports simple graphs. Nonetheless, by treating situation graphs
as node and a graph at the same time, we ignore the fact of an SGT being an hypergraph.
The development and embedding of the SGT ontology into a hypergraph ontology is
dedicated to the gentle reader.

4.3.2 Object Property Mapping

We presented the situation graph ontology as well as the graph ontology in the previous
sections. How to bring them together is shown in the following paragraph. The process
of bringing the ontologies together does not have to touch the definitions of classes, as
they are well defined by object properties. We alter the object properties in the situation
graph tree ontology so they match with object properties from the graph ontology and
the classes of the situation graph tree ontology automatically inherits from classes of the
graph ontology.

The situation graph tree has a root situation graph, symbolized by the object property
hasRootGraph. As we treat situation graphs as nodes, we state this object property to
be a sub-property of the graph ontology’s object property hasNode. This sub-property
axiom in combination with the declaration of a graph being equivalent to everything
that has at least one node and at least zero edges leads the SituationGraphTree to be a
Graph.
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A situation graph contains situation schemes. So, we state the relation hasSituationS-
cheme also to be a sub-property of the graph ontology’s object property hasNode. Now,
a situation graph is a Graph, too. Even if situation schemes are connected to the situ-
ation graph by only object properties of hasStartSituationScheme and hasEndSituation-
Scheme, it is inferred the situation graph to be a graph, as these object properties are
sub-properties of hasSituationScheme.

The predictions serves as a connection between situation schemes, thus, it obviously is
an edge. As the start node of a prediction is asserted by the object property hasPrevi-
ousSituationScheme, we declare it to be a sub-property of hasStartNode. Analogously,
we declare the object property hasNextSituationScheme to be a sub-property of hasEnd-
Node. Now, a TemporalSpecialization is an edge and more particular, a DirectedEdge as
we defined a start and an end node.

But the nodes, a prediction is adjacent to, are not already defined. The situation scheme
has an object property hasTemporalSpecialization which establishes the connection to a
directed edge of type TemporalSpecialization. The declaration of hasTemporalSpecializa-
tion to be a sub-property of hasEdge leads a situation scheme to b a Node.

Similar to the inference of a TemporalSpecialization to be a directed edge, we assert the
object property hasConceptualSpecialization a sub-property of hasEdge connecting a Situ-
ationSchema to a SituationGraph. Unfortunately, the range of a object property does not
affect the inference of its filler to be of the corresponding type. So currently, a Situ-
ationGraph only is inferred to be a graph but not a node as there is no hasEdge object
property assigned to it. At this point, we extend the definition of a situation graph by
adding the functional object property isConceptualSpecializedBy to its definition. This
object property has a range of ConceptualSpecialization and a domain of SituationGraph,
is an inverse property of hasSituationGraph, and is a sub-property of hasEdge.

4.4 Discussion

We proposed in Chapter 3.2.3 the ontology design of an other group and mentioned
to use that eventually to encode situation graph trees in ontologies. Implementing a
bidirectional transition from an situation graph tree to their ontology would allow us to
directly use their definitions of situations and vice versa. Although, we decided against
it for reasons described in the following section.

The ontology design in the current state allows a straight forward implementation of
the transformation from an SGT into the ontology. The following Chapter 5 shows the
implementation and substantiate this argument. The use of any another design than
the current one not only leads to increased effort in the implementation but also puts
semantics into the translation program. When operating with ontologies, hard-coding
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semantics into a program is counterproductive. So, the realization of the transition from
another description of situations takes place in the ontology. Section 4.3 shows the way,
such transitions can be developed.

First, the SGT concepts have to be identified in the third-party ontology. So, by creating
is-a relationships, the foreign concepts are mapped to the SGT counterparts. According
to the procedure proposed above, the same must be done with object properties, too.
But in contrast to the embedding of a graph, we assume that the development of such
a mapping ontology can be very difficult if not impossible in some special cases. The
ontology of (Bohlken and Neumann, 2009) for example describes agents and events very
accurately, but a bunch of high-level Swrl-rules represent the relations between them
which does not support an inheritance hierarchy such as classes or objects on the one
side and we do not use them in our ontology on the other side. We assume that the
situation awareness ontology (Baumgartner et al., 2010) can be mapped to the situation
graph ontology. But as this includes the comparison between different theories about
the representation of situations – on the one hand see (Barwise and Perry, 1984) on the
other hand (Schäfer, 1996) – it goes off this thesis’ topic.

In this chapter, we proposed the way of designing the situation graph tree ontology
in two ways. In Section 4.1 we firstly developed an ontology that resembles the tree-
like structure of an SGT. But as we had to determine that this ends in an impasse, the
design has been improved in Section 4.2 by porting the SGT model to the ontology. The
Section 4.3 shows an example for the powerfulness of ontologies by embedding the SGT
into graph theory.
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Chapter 5

Implementation

In this Chapter, we show implementation details of our new developed software SGTowl
(speak: [ez:dʒiːtaʊl]). Section 5.1 points out the current implementation of the software-
related model of the SGT. It states the disadvantages that implementation has and why
it has to be re-developed. Beginning with Section 5.2, we present the design of SGTowl.
It is stated how things were implemented and the motivation is explained to exactly do
so. We proof in Section 6 that our software SGTowl works correctly.

5.1 Current State of the SGT-Editor

The model of a situation graph tree currently is implemented twice in the environment
of the SGT-Editor. The background has a historical cause. First, there was the parser
for Sit++ formatted data. This parser transforms an existing description of a situation
graph tree into the SGT-model. Further, you are able to traverse this data structure into
a F-Limette file. Having such a file, the detection of situations in an annotated video
stream is possible with the support of the F-Limette inference engine. In the meantime,
(Münch et al., 2012b) adds machine learning to the former strict logic-based situation
detection, (Münch et al., 2012a) introduces the handling of incomplete data caused by
loss or overlapping. As the Fmthl file is a terminological box of rules, it is very hard to
read and write for a non-expert. The structured essence of an situation graph tree made
it easier to model the expected behaviour of agents in situations. Even people were able
to do it without being an F-Limette-expert. Lets call this model, the Sit-model.

One still has to create and edit textual data in the syntax of SIT++. So, a graphical user
interface was born, the SGT-Editor (Arens, 2004). This graphical user interface offers its
user a comfortable way to define situation graph trees without knowing anything about
the syntax of SIT++, you only have to know about the structure and behaviour of an situ-
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Figure 5.1: Data flow overview about the transitions of an SGT in the current SGT-Editor.

ation graph tree. The SGT-Editor extends DiaGen1, an editor and a framework for graph
editing applications, in the version 2.1. So a graphical representation was programmed,
for every element of the SGT-Editor (see Section 2.4). Bound to the requirements of Dia-
Gen and a graphical representation in general, a new model for situation graph trees
was programmed. To distinguish it from the Sit-model, let us call it the Ed-model.

Unfortunately, the Ed-model is incompatible with the Sit-model. To give an example,
we want to state the construction of visual elements. Some elements (a situation graph,
a situation scheme, etc.) strongly requires an horizontal and a vertical coordinate in the
visual embedding, but Sit++ does not support coordinates. Further, as you now have a
graphical editor for a situation graph tree, you have to be able to write the in-memory
data structure of an situation graph tree back to an Sit++ file – a functionality not needed
in the past. As the Sit-model must not be broken, the development of the Ed-model was
inevitable.

In this thesis, we also implement a program, that converts an SGT into an ontology and
backwards. But the actual architecture of the SGT-Editor as described makes it very hard
to extend it, as we want to meet the conditions of having well designed, maintainable

1http://www.unibw.de/inf2/DiaGen/

http://www.unibw.de/inf2/DiaGen/
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code, and being able to transform every existing model into an ontology and backwards.
Figure 5.1 shows the current transformation of formats in the default procedure of the
SGT-Editor: first, an Sit++ file is parsed by the SITParser, which emerges the Sit-model.
Then, the Sit2DiagramModelConverter converts the Sit-model to the Ed-model. Now one
is able to edit a situation graph tree with the graphical user interface. Before you get a
F-Limette file, you first have to store the model in a Sit++ file, parse it again to get the
Sit-model, and convert it to the resulting F-Limette file – there exists no other way to
convert a Ed-model to a Sit-model or directly to a F-Limette file.

As you may have noticed, the current architecture of this part makes it hard to imple-
ment an additional conversion to an ontology in a maintainable and well designed way.
Having in mind a future rework of the SGT-Editor, we wanted to build a common basis
for both models. In this basis it should be possible to add additional functionality easily.
The following Sections depicts the design of this basis, its implementation and the proof
of equivalence.

5.2 Decisions about the Design in SGTowl

The application to implement – SGTowl – has to fulfil several requirements. This Section
introduces the requirements and deals with its implementation. Before we will describe
the translation between arbitrarymodels in arbitrary directions in Section 5.2.2, we show
the software architecture and explain our design decisions in the Section 5.2.1.

5.2.1 Handling Multiple Representations

The main criteria is the support of multiple representations of a situation graph tree. As
the definition and the behaviour of a situation graph tree is independent from an arbit-
rary model representation implementation, we want to encapsulate these features. The
Decorator pattern (Gamma et al., 1998) fulfils this and many other requirements stated
later in this section. This pattern allows us to implement the basic functionality and dec-
orates it with arbitrary features, i.e. positions for the visual representation. Figure 5.2.1
shows a UML-diagram of the decorator pattern. The class ConcreteComponent has a
method called operation(), it is a realization of the interface Component and the class,
that will be decorated by the abstract class Decorator. The Decorator class – a realization
of the interface Component, too — holds a reference to the decorated Component, the
ConcreteComponent in the simplest case. The exemplary method operation() in Decor-
ator redirects method calls to the corresponding method of its referenced component.
The ConcreteDecoratorA/B/... overwrites the method operation() and extend it with own
functionality.



48 Chapter 5. Implementation

Figure 5.2: The Decorator Design Pattern in Uml. The Decorator as well as the
ConcreteComponent implements the same interface Component. The function call
operation() at the Decorator is redirected to the field component. In this case, a
ConcreteDecorator that implements Decorator has to overwrite the method decorate().
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The model of a situation graph tree does not only consists of a single class. Instead, each
concept – as described in Section 2.4 – has its own class. Thus, the decorator pattern
has to be applied to every concept. The highest abstraction layer, the interfaces of the
concepts, counts eighteen classes. That makes 72 classes in total, when only one model
representation is implemented. In comparison to the previous implementation with two
separate model representations, there only were 45 classes. Althoughwe now havemore
classes, we adhere to the decorator pattern, as the advantages prevail. Besides, we only
need to maintain the behaviour and interaction of situation graph tree elements at one
single model representation, we are in the beneficial situation to easily add new model
representations with less lines of code.

5.2.2 Translation Between Different Representations

Using the decorator pattern allows the encapsulation of storage relevant code into sev-
eral classes. This section describes the process of switching the representation, for ex-
ample switching to the Sit++ representation.

As we intend to support a bunch of different representations of the SGT-model, we need
an abstraction for object instantiation. The interface SGTModelFactory holds as a tem-
plate to create new instances of a particular model representation. Implementations of
that interface according to the Factory pattern (Gamma et al., 1998) allows the instan-
tiation of objects without knowing their types. Figure 5.2.2 shows a UML-diagram of
the factory pattern. The interface Creator contains the method factoryMethod() for cre-
ating a Product. The implementation ConcreteCreator of the interface overwrites the
factoryMethod() and returns a new instance of the implementation ConcreteProduct of
the interface Product.

In SGTowl, we implemented for each model representation a factory of the type SGT-
ModelFactory, that exclusively creates object of the correspondingmodel representations
type. For every class of the model, there are two factory methods. One method for creat-
ing a whole new instance of an SGTElement and onemethod that creates a new decorated
instance around an existing one. Such a method is required as we hide every constructor
of a concrete SGTElement from outside the package. The intention of doing so is to force
using the factory for the instantiation of classes. By this tactic, we promise ourself the
prevention of a model mixture in implementations.

To transform a representation to another one, we introduced the utility class SGTMod-
elConverter. This class has two functions, setModelFactory(SGTModelFactory) returning
the SGTModelConverter itself and convert(SituationGraphTree)which returns a Situation-
GraphTree according to the chosen representation by calling the function createSituation-
GraphTree(SituationGraphTree) of the assigned SGTModelFactory. At the moment, only
the object SituationGraphTree is converted to another class – SitSituationGraphTree in
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Figure 5.3: The Factory Design Pattern. The Creator is an interface for
an ConcreteCreator. The method factoryMethod() creates a new instance of a
ConcreteProduct which is an implementation of Product.

our example. The tail of the model remains in its original state. As the behaviour of
the model is independent of the underlying serialization, it does not matter that only
the SituationGraphTree has an altered model. So, the switch actually is made up of the
instantiation of a new object and the return of the reference to that object which makes
it really fast.

The actual effort relies in the serialization of the situation graph tree to a file. The dif-
ferent implementations of DecoratorSituationGraphTree have to overwrite the function
writeTo(OutputStream) of the interface Writeable. So, every class that inherits SitSitu-
ationGraphTree and can be used to write the data structure of the situation graph tree to
an output stream, for example to a FileOutputStream.

The serialization of a situation graph tree highly depends on the kind of representation,
but the procedure is mostly similar. The call writeTo(outputStream) of the object SitSitu-
ationGraphTree writes a string representation of the current situation graph tree to the
output stream and calls the function SitSituationGraph.writeTo(...). As after this second
function call the situation graph tree still may write data to the output stream, the po-
tential output result is a context free grammar. Note, that the second call has to create
a new object SitSituationGraph that decorates the (unconverted) root situation graph of
SitSituationGraphTree. In this way, the actual instance of the referenced situation graph
does not matter – it could be possible, that we decorate a SitSituationGraph by itself, but
as we discard the reference to all created objects after the serialization, the model does
not blow up by decorated objects of decorated objects and so on.



5.2. Decisions about the Design in SGTowl 51

Figure 5.4: Extract of the Uml-Diagram about the interaction among the Decorator
and the Owl-model. Classes in the Owl-model like OwlSituationGraphTree inherits
from its DecoratorSituationGraphTree and implement OwlSerializable. The interface
OwlSerializable contains the two methods writeTo() and readFrom().

When visiting thewriteTo(...) function of the SitSituationGraph, we do the same for every
associated situation scheme in a recursive manner: create a new Sit-object around the as-
sociated objects and call their writeTo(...) function. The recursion terminates in situation
schemes that does not have conceptual specializations. The following Section describes
the recursion in detail.
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Chapter 6

Equivalence of SGTs and the SGT
Ontology

In the previous chapters, we described the design and the implementation of the trans-
formation from an SGT to Owl and the handling of different representation formats of
the SGT. This chapter extends Chapter 5 by the proof that a situation graph tree can be
described in an ontology. The proof shows two directions. First, Section 6.1 describes the
way a situation graph tree is written into an ontology. This proof is backed by pseudo
code which represents the corresponding part of the program SGTowl in a very abbrevi-
ated manner. Then, Section 6.2 shows the other way: a situation graph tree is read from
an Owl ontology into our data structure. Although the writing to and reading from the
ontology is nearly symmetric, challenges arise – for instance the Owl Api does not stick
to the order of asserted axioms.

We limit our proof to the program code, we have written. A proof of the correctness of
third-party tools and libraries is omitted. Such a third party library are the Owl Api in
the first place. So, we assume these libraries and tools (i.e. the Java JRE) work correctly.

6.1 SGT Concepts in Owl Representation

To prove that we can express all concepts of a situation graph tree in an Owl ontology,
we show a program that does the job. That program has to fulfil several requirements
which are shown one by one.

(i) The program has to terminate. In fact, we can show our program terminates in
O(n) where n is the amount of concepts in the situation graph tree to transform.

(ii) All informations an SGT provides have to be represented in the ontology.
(iii) The program must ensure the structure of an SGT.
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6.1.1 Termination of the Transformation

Algorithm 6.1: SGTwalkThrough()

input : SituationGraphTree
1 begin

// See init(): Procedure 6.3
2 context ← OwlSituationGraphTree.getRootGraph() ;

// visit OwlSituationGraph, see Procedure 6.4
3 foreach situation ∈ context.getSituationSchemes() do

// visit OwlSituation, see Procedure 6.5
4 situation.getActionScheme().visit() ; // see Procedure C.1
5 situation.getStateScheme().visit() ; // see Procedure C.2
6 foreach specialization ∈ situation.getSpecializations() do

// visit OwlSpecialization, see Procedure 6.6
7 context ← specialization.getSpecializationGraph() ;
8 go to line 3 ;

9 foreach prediction ∈ situation.getPredicitons() do
10 prediction.visit() ; // see Procedure C.3

The structure of a situation graph tree transformed into an Owl ontology by walking
through its structure recursively. The Algorithm 6.1 shows pseudo code about the way
SGTowl walks through the structure. For reasons of increased readability, we chose
using the expression visit instead of the function call writeTo(...). The algorithm takes a
situation graph tree as parameter and visits it. There, it sets the root graph to the current
context and visits every situation within that context (line 3). At the situation, the action
scheme as well as the state scheme are visited. These steps always return and does not
change the way of walking through the structure as it is shown later in this section. The
visiting of every specialization in the current situation influences the walk through the
SGT structure massively. As the destination of a specialization is a situation graph like
the root graph, we change the current context to that situation graph and continue in
line 3. So, we recursively visit all descendent SGT elements in the tree-like hierarchy
below the current situation scheme. Returning from the recursion, we finally visit the
situation schemes predictions. Like action or state schemes, predictions do not affect the
way we walk through the data structure.

The recursion in Algorithm 6.1 always terminates. The numbers of iterations of the
foreach loop are fixed for each context in line 3 as changing the context creates a new



6.1. SGT Concepts in Owl Representation 55

loop that does not affect the loop of the previous context. The same argument holds for
the loop in line 6.

Every situation graph is visited once in maximum. The specialization of a situation
scheme by situation graphs containing situation schemes that are ancestors in the tree
hierarchy is forbidden (Arens, 2004). The program checks whether the specializing situ-
ation graph is in the ancestors of the situation scheme while adding specializations.
Thus, loops are avoided and (i) holds with respect to the termination of the program.

The rest of this section shows that every visit terminates and that he translates every SGT
concept to the ontology. The following procedures’ pseudo code needs an explanation
in some places. The function getOwlIndividual(SGTelement) converts an SGT concept
deterministic to an unique Owl individual. Individuals in the ontology are identified
by its name, if two individuals are declared with the same name, they are the same
individual. So the function mostly creates Owl individuals with a name of a combination
of the SGT concepts, its internal identifier, and a number that represents for example the
position of an element in a list. The function createAxiom(subject,property,object)
creates an axiom that applies the expression property.object to the individual subject.

Procedure 6.2: addOption

input : OWLIndividual this; OWLObjectProperty property; Attributes opt1, opt2
1 begin
2 if isAttribute (opt1) then
3 individual ← getOwlIndividual(opt1) ;
4 else
5 individual ← getOwlIndividual(opt2) ;

6 axiom ← createAxiom(this,property,individual) ;
7 ontology.add(axiom) ;

The Procedure 6.3 shows the visit of a situation graph tree element. It is called init()
as it is the entrance to the walk through the data structure. In line 5 the context changes
to the root graph and returns a reference to that root graphs individual. As previously
shown, this function call returns under the circumstances that the visiting of every ob-
ject terminates. The reference is connected to the situation graph tree with the object
property hasRootGraph in line 6. That axiom is added to the ontology in line 7. From
line 8 to line 14 including, individuals of all situation graph trees attributes are created,



56 Chapter 6. Equivalence of SGTs and the SGT Ontology

Procedure 6.3: init

output: OWLIndividual SituationGraphTree
1 begin
2 this ← getOwlIndividual(OwlSituationGraphTree);
3 ontology.add(this) ;
4 rootGraph ← OwlSituationGraphTree.getRootGraph();
5 rootGraph ← rootGraph.visit();
6 axiom ← createAxiom(this,hasRootGraph,rootGraph) ;
7 ontology.add(axiom) ;

// Add the attributes
8 addOption(this,hasAttributeDepth,DEPTH,BREADTH) ;
9 addOption(this,hasAttributeGreedy,GREEDY,NONGREEDY) ;
10 addOption(this,hasAttributeSingular,SINGULAR,PLURAL) ;
11 addOption(this,hasAttributeTraversal,TRAVERSAL,OCCURENCE) ;
12 individual ← getOwlIndividual(getDefaultIncremental()) ;
13 axiom ← createAxiom(this,hasAttributeIncremental,individual) ;
14 ontology.add(axiom) ;

the attributes are added to the ontology in O(5).

Procedure 6.4: OwlSituationGraph.visit

output: OWLIndividual SituationGraph
1 begin
2 this ← getOwlIndividual(OwlSituationGraph);
3 ontology.add(this) ;
4 individual ← getOwlIndividual(getDefaultIncremental()) ;
5 axiom ← createAxiom(this,hasAttributeIncremental,individual) ;
6 ontology.add(axiom) ;
7 foreach element situation of getSituationSchemes() do
8 individual ← situation.visit() ;
9 axiom ← createAxiom(this,hasSituationScheme,individual) ;
10 ontology.add(axiom) ;

// Add situation schemes marked with the start flag
11 if situation.isStartSituation then
12 axiom ← createAxiom(this,hasStartSituationScheme,individual) ;
13 ontology.add(axiom) ;

// Add situation schemes marked with the end flag
14 if situation.isEndSituation then
15 axiom ← createAxiom(this,hasEndSituationScheme,individual) ;
16 ontology.add(axiom) ;

17 return this;
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The visit of the situation graphs shows Procedure 6.4. At the beginning, the individual
for the current visited situation graph is created and added to the ontology. As a situ-
ation graph is marked with the flag defaultIncremental, this flag is added to the ontology
beginning with line 4. Until now, the operations need time inO(1) each. In line 7 we loop
through the list of assigned situation schemes and visit them in the following line. The
checks and subsequent assertions of starting and ending situations in the lines 11 and 14
finish in constant time. So procedure 6.4 needs computational time inO(n×O(m))where
n is the length of the situation scheme list and O(m) is the time needed for the visit of a
situation scheme. It can be easily seen, that every operation terminates, the termination
of the situation schemes visit shows the initial proof as well as the description of the
following procedures.

The visitation of a situation scheme in Procedure 6.5 terminates if all operations and sub-
sequent visits terminate. Again, we start with the declaration of the situation individual
itself (Line 2) and add the incremental flag. The action and the state scheme are added
in Lines 7 and 10 respectively. The Procedures C.1 and C.2 show the evidence that the
“visit” function calls for action and state schemes return in nearly constant time. The
visitation of each specialization in line 13 triggers the context change to a specializing
situation graph. If there are no specializations, the recursion ends in this situation and
the stack of function calls is processed. The procedure of visiting situation schemes ends
in the visit of every prediction. Procedure C.3 shows the termination of visiting predic-
tions. An upper bound for the amount of predictions for a situation scheme is the amount
of situation schemes in the parent situation graph O(m): a situation scheme may have
one prediction edge to any other situation scheme at the maximum, including itself. A
prediction edge to a situation scheme outside the current situation graph is prohibited.
Only outgoing edges are considered, so every prediction edge is visited exactly once.

The recursion in the walk through the situation graph tree structure starts in the visit-
ation of a Specialization. Procedure 6.6 outlines the transition of specializations to Owl.
The required features to translate are the connection to the situation graph that spe-
cializes the situation and the index number in the order of the other specializations of
that situation. In Line 7, we visit the connected situation graph. After that function call
returns, we get the reference to the situation graphs Owl individual and assign it to the
specialization by the hasSituationGraph object property. The ordered index is assigned
afterwards. Although it is not an essential feature of an SGT, we additionally store the
specialized situation as we use that link in our SGT data structure. The termination of
the function call is obvious, the amount of time is constant apart from the visit of the
specializing situation graph.

The procedures for the StateScheme and the ActionScheme can be found in the Ap-
pendix C, the only feature they contain is a list of predicates. Thus, it is obvious that
their transformation to Owl terminates, if the visitation of a Predicate terminates. Pro-
cedure 6.7 outlines the transition of predicates into Owl. According to the description in
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Procedure 6.5: OwlSituation.visit

output: OWLIndividual Situation
1 begin
2 this ← getOwlIndividual(OwlSituation) ;
3 ont.add(this) ;
4 ind ← getOwlIndividual(getDefaultIncremental()) ;
5 axiom ← createAxiom(this,hasAttributeIncremental,ind) ;
6 ont.add(axiom) ;

// Visit the action scheme
7 ind ← getActionScheme().visit() ;
8 axiom ← createAxiom(this,hasActionScheme,ind) ;
9 ont.add(axiom) ;

// Visit the state scheme
10 ind ← getStateScheme().visit() ;
11 axiom ← createAxiom(this,hasStateScheme,ind) ;
12 ont.add(axiom) ;

// Visit all the specializations
13 foreach element e of getSpecializations() do
14 ind ← e.visit() ;
15 axiom ← createAxiom(this,hasConceptualSpecification,ind) ;
16 ont.add(axiom) ;

// Visit all the predictions
17 foreach element e of getPredicitons() do
18 e.situation ← this;
19 ind ← e.visit() ;
20 axiom ← createAxiom(this,hasTemporalSpecification,ind) ;
21 ont.add(axiom) ;

22 return this;
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Procedure 6.6: OwlSpecialization.visit

output: OWLIndividual Specialization
1 begin
2 this ← getOwlIndividual(OwlSpecialization);
3 ont.add(this) ;

// Link the source of this specialization
4 ind ← getOwlIndividual(getSpecializedSituation()) ;
5 axiom ← createAxiom(this,hasPreviousSituationScheme,ind) ;
6 ont.add(axiom) ;

// Link the destination of this specialization
7 ind ← getSpecializationGraph().visit() ;
8 axiom ← createAxiom(this,hasSituationGraph,ind) ;
9 ont.add(axiom) ;

// Add the ordered index
10 literal ← getOwlLiteral(getSpecializationIndex()) ;
11 axiom ← createAxiom(this,hasOrderedIndex,literal) ;
12 ont.add(axiom) ;
13 return this;

Procedure 6.7: OwlPredicate.visit

output: OWLIndividual Predicate
1 begin
2 this ← getOwlIndividual(OwlPredicate);
3 ont.add(this) ;
4 size ← #getArguments() ;
5 for i = 0 to size do

// Create object property axioms
6 axiom ← subProperty(hasArgument + i, hasArgument) ;
7 ont.add(axiom) ;

// Add the arguments
8 ind ← getArguments(i).visit() ;
9 axiom ← createAxiom(this,hasArgument + i, ind) ;
10 ont.add(axiom) ;

11 return this;
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Section 4.2.1.7, for the X-th argument of the predicate, an object property hasArgumentX
must be created. Line 6 handles the declaration of this object properties, in Line 9 the Ar-
guments are applied correctly to the predicate. The visit of an argument in Line 8 simply
redirects the function call to the visitation of a Predicate, if it is a ComplicatedArgument
or to the visitation of a Variable. As the predicate is finite, we cannot run into an endless
loop by visiting a ComplicatedArgument. In Procedure C.6 can be seen that Variable only
is turned into an individual, so this visit always terminates. As there are not any further
features to add, we can state that every Predicate is mapped correctly to the ontology.

The left SGT concepts to show the equivalence are Prediction, BindingAssingment, and
BindingRelease. The visit of these classes is similar to the procedures presented so far
thus, we skip a detailed description. They can be found in C.3, C.4, and C.5, respectively.
It can be seen easily that they map all the features of their SGT description and that the
procedures terminate. The computational time of the Prediction is linear in its amount
of bindings which need constant time for the transformation.

As described above, the transformation of all the elements need constant time plus the
computational time of objects connected to it. Every element in the SGT is visited once,
after leaving an element, it is never visited again. Thus, in a SGT with n elements, the
transformation needs O(n) time.

6.2 Owl transformation to SGT

Procedure 6.8: loadowl

1 begin
2 buildMapIndividual2OwlClass() ;
3 buildClassForest() ;
4 buildMapIndividual2SGTClass() ;
5 buildMapIndividual2SGTElement() ;
6 assembleSGT() ;

The transformation of situation graph trees the way backwards from an Owl ontology
works as depicted in the Procedure 6.8. At first, we have to know the type of individuals.
We assert individuals may have a single type only (sgt2owl only applies one type to an
individual). Next, we create a ClassForest that represents the subclass relation in a tree-
like structure. The ClassForest allows us to map the type of an individual to a known
SGT class by searching the tree upwards until the root or an SGT class is reached. As we
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now know the type of an individual that corresponds to an SGT concept, we create SGT
objects for each Owl individual and map it to the object. The final step is the assembling
of the SGT objects according to the assertions in the ontology.

6.2.1 Map Owl-Individual

The transformation to the SGT model begins with building a map that stores the indi-
viduals of an ontology and the corresponding Owl-class. The process primarily is real-
ized within the Owl Api framework by implementing anOWLOntologyWalkerVisitor and
using an OWLOntologyWalker. The walker walks through the whole ontology and calls
for example visit(OWLClassAssertionAxiom desc) when he meets an OWLClassAssertion-
Axiom. The visitor stores every visit of such a OWLClassAssertionAxiom into a list. The
proof of these functions correctness is out of this thesis’ scope.

The implementation of the visitor has additional functionality: it builds up an Owl-
ClassForest when visiting OWLSubClassOfAxiom. The evidence that the class tree rep-
resents the subclass axioms of an ontology in a tree-like data structure is shown in the
following section.

6.2.2 Of Subclasses, Trees, and Forests

With an eye towards “non-SGT” ontologies, we have to provide a technique to handle
individuals that do not have an SGT class as type. Further, we want to allow a semantic
refinement of variables and predicates in the ontology thus classes are defined that have
no representative in the situation graph tree model. But we require that one of its super
types is an SGT class so we can translate it to the model. There are no data structures
in an ontology, there only are axiom and declarations etc. So we have to read all the
subClassOf-relations and build up a data structure that is searchable effectively. The
OwlClassForest is a helper class that always holds a forest of trees of subclass axioms.

A forest is a set of trees. We say a tree is a data structure of at least one connected objects
of the type GraphNode, thus every GraphNode is also a tree. A GraphNode is connected
to another one by the parent or child property. While the parent of a GraphNode always
is an unique GraphNode, it may has multiple children. A GraphNode must not have a
parent as a child.

The Procedure 6.9 constructs a forest of Owl classes by adding OWLSubClassOfAxioms
as parent-child relations to the existing forest. During the processing of the asserted
OWLSubClassOfAxiom in the ontology, the current forest is subject to the following in-
variants which holds at the end of every procedures call:

(i) an Owl class without super classes is always the root of a tree.
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Procedure 6.9: addSubClassOfAxiom

input : OWLSubClassOfAxiom subClassAxiom
1 begin
2 child ← subClassAxiom.getSubClass() ;
3 child ← new GraphNode(child) ;
4 foreach non-anonymous class parent ∈ subClassAxiom.getSuperClass() do
5 if parent == owl:Thing then
6 go to 4 ;

7 parent ← new GraphNode(parent) ;
8 foundParent ← forest.search(parent) ;
9 if foundParent then
10 foundChild ← forest.search(child) ;
11 if foundChild then
12 add ← foundChild ;
13 if empty(add.parent) then
14 forest.remove(add) ;

15 else
16 add ← GraphNode(child);
17 foundParent.addChild(add) ;
18 go to 4 ;

19 foreach GraphNode tree ∈ forest do
20 if tree.getRoot() == child then
21 forest.remove(tree) ;
22 forest.add(parent) ;
23 parent.addChild(child) go to 4 ;

24 parent.addChild(child) ;
25 forest.add(parent) ;
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(ii) an Owl class with super classes is the child of every non-anonymous superclass.
(iii) an Owl class with super classes is never the root of a tree.

As a reminder, an example of a OWLSubClassOfAxiom could be as follows:

subclass ⊑ ⊤ ⊓ supclassA ⊓ objectpropA.classB ⊓
supclassC ⊓ ⩽ 4 objectpropB.classD

In this example, the left side represents the subclass and the whole right side the super-
class in the OWLSubClassOfAxiom. The Owl Api handles the right side as an OWLSub-
ClassOfAxiom while the objectpropA.classB and ⩽ 4 objectpropB.classD are anonymous
classes. Such anonymous classes as well as the ⊤-class owl:Thing are of no interest, as
the first does not represent an is-a relationship and the latter are implicit for every class.
The Lines 4 and 5 excludes these classes.

The evidence of Procedures 6.9 correctness is shown by induction on the invariants (i)-
(iii). In the first call of addSubClassOfAxiom, the forest is empty. Without loss of gen-
erality we state that the axiom to add only holds a single non-anonymous superclass
SC which is unequal to owl:Thing, so the foreach-loop (Line 4) terminates after the first
loop. As the forest is empty, no parent of SC are found and the procedure continues in
Line 24. At the end of the function call, we have a forest containing a single tree which
has SC as root node and the subclass as its only child, the invariants (i)-(iii) hold. Let us
show that they also hold at the nth call of the procedure.

We assume, that the invariants hold at the nth call and without loss of generality that
the axiom to add only holds a single non-anonymous superclass SC unequal to owl:Thing
so we can skip to line 9. At this point there are three cases we handle separately:

1. The parent (superclass) already is in the forest.
2. The child is the root of a forest.
3. Everything else.

The algorithm searches for the superclass (parent) in the forest and – in case of success –
afterwards for the subclass (child) which covers case 1. If the child is already in the graph,
a reference to its corresponding node is added as child to the parent (Line 17), otherwise
a new node is used for that. In line 13 is checked whether the child already is the root of a
graph. As this entity now has a superclass, we remove that graph from the forest so (iii)
holds. The invariant (ii) holds as the procedure so far is performed for every anonymous
superclass. If the class does not have a superclass, the foreach-loop is not executed and
the assumption for (i) holds. As then in line 18 the loop ends and therefore the function
call, the invariants stay valid.

If the parent was not found in the forest, we search for the child to add in the root of
the graphs. This case (2) occurs when the current child previously was declared to be a
superclass. Then, we have to remove that graph from the forest and attach it to the list
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of the parents children. As the child now has a superclass and it is removed from the
forest (21), the invariants (i) and (iii) hold, (ii) follows as written before. In case 3 is the
situation the same as in the previous one but the child is not the root of a graph, so we
do not have to remove that graph from the forest. The search for elements in the forest
handles Procedure C.7 and C.8 respectively. They are standard implementations of the
depth-first search and thus not be proven here.

6.2.3 Prerequisites for the Assembling

With the prerequisite of having the Owl classes in a tree-like data structure we continue
the Procedure 6.8 by building a map of Owl individuals to SGT elements (line 4). This
process iterates over the list of individuals built in Section 6.2.1 and maps their classes
to an SGT class. The mapping is achieved by identifying the individuals type within
the OwlClassForest class (Section 6.2.2) is found or the root has been passed. In the last
case, where no corresponding SGT class was found, we can ignore this individual. Such
situations may appear by working with foreign ontologies. As this process is trivial and
heavily relies on third-party software, the prof is omitted in this thesis.

We also skip the proof of correctness for the procedure in line 5 for the same reason. In
that procedure, we iterate through the map of Owl individuals to SGT classes and instan-
tiate SGT objects according to the class. These objects are mapped to the Owl individuals
in a look-up-table. At this moment, the created SGT object instances only consist of a
reference but does not have any SGT-semantic content, yet. The next sections shows
that every SGT feature we put into the ontology is restored correctly.

6.2.4 Assembling the SGT

Finally, we reached the last step of the transformation Procedure 6.8 in line 6. At this mo-
ment, we have built a lookup-table that maps every Owl individual to an unique instance
of its corresponding SGT class. In the final assembling, we iterate over this table and call
the assemble function for each class. This function gets the loops current Owl individual
as an argument, so the instantiated object knows the data it has to reconstruct from the
ontology. The lookup-table can be seen as a global variable. Procedure 6.10 shows
an exemplary function call, here for an SituationGraphTree. At first, the root graph in-
dividual is read from the ontology (Line ch:proof:sec:owl2sgt:sgtassemble:sgt:getroot).
Second, this individual is searched in the lookup-table. The result is a reference to
the root-SituationGraph-object which is applied to the SituationGraphTree as its root
graph. Beginning with the line 4, the attributes of the situation graph tree are extrac-
ted and applied. As they are simple enumerations instead of objects, their string value
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Procedure 6.10: OwlSituationGraphTree.assmeble

input : OWLIndividual individual
1 begin
2 rootGraph ← individual.getObjectProperty(hasRootGraph) ;
3 setRootGraph(lookUpTable.get(rootGraph));
4 depth ← individual.getObjectProperty(hasAttributeDepth) ;
5 setAttribute(depth);
6 greedy ← individual.getObjectProperty(hasAttributeGreedy) ;
7 setAttribute(greedy);
8 singular ← individual.getObjectProperty(hasAttributeSingular) ;
9 setAttribute(singular);
10 traversal ← individual.getObjectProperty(hasAttributeTraversal) ;
11 setAttribute(traversal);
12 incremental ← individual.getObjectProperty(hasAttributeIncremental) ;
13 setDefaultIncremental(incremental);

Procedure 6.11: restoreListOrder

input : OWLIndividual individual, OWLObjectProperty hasProp, List list
1 begin
2 index ← 0 ;
3 indexMap ← new Map ;
4 foreach OWLIndividual ind ∈ individual.hasProp do
5 sgtelem← SGTlookUpTable.get(ind) ;
6 index ← ind.getIndexFromName() ;
7 indexMap.put(index - 1, sgtelem) ;

8 size ← #indexMap ;
9 for i = 0 to size − 1 do
10 list.add(indexMap.get(i));
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can be applied directly. At the end of this procedure, all informations belonging to the
SituationGraphTree are completely restored.

We propose another procedure 6.12 as it introduces the function call restoreListOrder.
Although we already mentioned that the order of predictions or specializations is irrel-
evant (Münch et al., 2011b) for the recognition of situations, it counts on this evidence.
We additionally wrote an unit test, that loads an SGT from a Sit++ file, stores the SGT
into an ontology, loads the SGT from the ontology, and write it back to an Sit++ file.
Then, the original Sit++ file is compared line by line with the resulting file. The only
lines that may differ are comments otherwise the test fails. As we want to support this
proof by such a test, we also have to restore the order of predictions or specializations,
even the order of predicates in a state scheme is affected. As we encoded the index into
the name of an individual, we now restore this index. Procedure 6.11 begins with the
initialization of the index and a map that servers as a sparse array. The foreach-loop in
line 4 iterates over the finite list of individuals that are connected by the given object
property hasProp. In a loop, we get the SGT element that corresponds to the current
individual, extract its index, and add them to the map. We need the latter as in Java, this
list does not support the insertion of elements at an arbitrary position i if the element at
the position (i − 1) is empty. A second loop (line 9) is needed that iterates from 0 to the
length of the map and adds the SGT element with the index i to the list. Thus, the order
of the resulting list is accordingly to the indices of the individuals.

Procedure 6.12: OwlSituationGraph.assmeble

input : OWLIndividual individual
1 begin
2 incremental ← individual.getObjectProperty(hasAttributeIncremental) ;
3 setDefaultIncremental(incremental);
4 restoreListOrder(individual,hasSituationSchema,sitList) ;
5 getSituations().addAll(sitList) ;
6 foreach OWLIndividual ind ∈ individual.hasStartSituationSchema do
7 getSituations().get(ind).setStartSituation(true) ;

8 foreach OWLIndividual ind ∈ individual.hasEndSituationSchema do
9 getSituations().get(ind).setEndSituation(true) ;

Procedure 6.12 shows the assembling of a situation graph. It shows that all concepts
belonging to a situation graph are restored, namely the value defaultIncremental and
the list of situations. As in the SGT ontology, the information about situation schemes
being a start situation or an end situation is stored in the situation graph, we extract
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this information and apply it to the situation schemes in this procedure beginning with
Line 6.

The Procedure 6.13 for assembling a situation scheme is a representative for the remain-
ing procedure. The schematic about reading informations from the ontology and apply-
ing to the corresponding SGT element apply to them all in a very similar way. They can
be found in Appendix C.2.

Procedure 6.13: OwlSituation.assmeble

input : OWLIndividual individual
1 begin
2 ind ← individual.getObjectProperty(hasAttributeIncremental) ;
3 setDefaultIncremental(ind);
4 ind ← individual.getObjectProperty(hasActionScheme) ;
5 setActionScheme(ind);
6 ind ← individual.getObjectProperty(hasStateScheme) ;
7 setStateScheme(ind);
8 restoreListOrder(individual,hasConceptualSpecification,list) ;
9 getSpecializations().addAll(list) ;
10 restoreListOrder(individual,hasTemporalSpecification,list) ;
11 getPredictions().addAll(list) ;

Having showed that every feature is restored correctly and as the evidence of the ter-
mination of each proposed procedure is obvious, we successfully have proven that the
transformation of an SGT ontology to an SGT works correctly. Thus, in combination
with the evidence of the other transformation direction in Section 6.1, the equivalence
of the two representation formats is proven.
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Chapter 7

Summary

7.1 Conclusion

As a discussion about the thesis already takes place in Chapter 4.4, we focus upon the
conclusion in this Chapter. In Chapter 2, we presented the foundations for this thesis.
This includes an introduction to Description Logic, the Web Ontology Language as well
as an overview on Situation Graph Trees. Further, we outlined the Fuzzy Metric Tem-
poral Horn Logic and embedded this work in a Cognitive Vision System. Related work
was presented in Chapter 3.

The comparison of SGTswith ontologies took place in Chapter 4. We analysed the ability
of representing an SGT in an ontology. As a result, we got a well designed and reusable
ontology that represents an SGT perfectly. The developed ontology has expressiveness
in , thus we support the maximum expressiveness in Owl-DL. The definition of
SGTs allowed us not to need the rules extension Swrl as done before in e.g. (Baumgartner
et al., 2010; Bohlken and Neumann, 2009).

The equivalence between SGTs and the developed ontology was proven by giving a pro-
gram that implements the transformation from an SGT to an ontology and vice versa.
The transformation performs without any loss of information. The application was
presented in Chapter 5, the comprehensive proof in Chapter 6. With the work of this
thesis, a representation of SGTs is available in a standardized and commonly accepted
file format for knowledge representation and sharing.

As a further benefit, this thesis opens up new possibilities. A technique was proposed for
the development of a transformation ontology that allows importing foreign situation
awareness ontologies without any adjustments to the developed application.
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7.2 Future Work

In this thesis we developed the foundation for further research. As we proposed a way
to enhance the situation graph tree ontology with additional information and to create
a mapping for other situation awareness ontologies in the same way, the comparison of
situation graph trees with other representations for situations are of interest. Compar-
ing situation graph trees with other representations leads to interesting questions about
the conversion of spatial relations, for example. In a situation graph tree, the spatial
relations between agents are coded into Fmthl predicates, thus this part is shifted into
the inference engine. Other ontologies have classes for such relations, so a conversion
from predicates to classes has to be emerged.

A helping strategy may be the refinement of the current realization of predicates in the
ontology. Currently, the Fmthl predicates are represented in the ontology by its name
and its arguments. Thus leads to absence of semantics about the predicates itself. As
there are some predicates that are used very often, for example to specify the distance
between an agent and a patient. These predicates could be refined further by ontological
concepts. So, the exchange of situation definition across research groups can be simpli-
fied. The so far presented improvements for the handling of predicates may be enhanced
further by encoding Fmthl predicates itself into an ontology.

Apart from arising questions about semantics in the ontology, the proposed program
SGTowl can be developed further, too. In this thesis, we encode the situation graph tree
in individuals. The only place where we actually require individuals is the encoding of
ordered indices of outgoing edges. But as they are deprecated and supported only for
backwards compatibility, this requirement easily could be dropped. Then, a concrete
situation graph tree could also be represented as classes instead of individuals in the on-
tology which increases the flexibility in creating a mapping to other situation awareness
ontologies.

A further improvement would be the ability of handling individuals that have multiple
types. In the scope of this thesis, such a feature was not needed but the requirement of
supporting it could arise by importing third-party ontologies.

The development of SGTowl extracted the current model of the situation graph trees
from the SGT-Editor. During the thesis it was decided to switch the visual represent-
ation framework of the SGT-Editor to a newer version. To avoid twice the effort or
breaking the developed model to support the soon-to-be-outdated SGT-Editor, we omit-
ted the back-port of SGTowl into the editor. So, the integration of SGTowl as standard
knowledge format in the next generation SGT-Editor is still an outstanding task.
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Timetable

A.1 Planned Timetable

Time Task

4 weeks Review of literature, discussion of various ontology representa-
tions, representation of concepts (time, hierarchy etc.)

3 weeks Development of an extensive ontology.

3 weeks Derivation of requirements

2 weeks Introduction to the api of the chosen ontology representation. If
there is no existing API, this step will take more time.

2 weeks Design the transformation from ontology to SGT and vice versa.

5 weeks Implementation of the transformation from an ontology to SGT.

2 weeks Implementation of the transformation SGT to an ontology.

3 weeks Evaluation of the implementation.

2 weeks Finalization the diploma thesis and preparation of the presentation.
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A.2 Final Timetable

Time Task

02.04.2012-
07.05.2012

Review of literature, discussion of various ontology representa-
tions, representation of concepts (time, hierarchy etc.)

07.05.2012-
20.05.2012

Porting the Virat Situation Graph Tree into a basic ontology. Dis-
cussion about the pros and cons of that first solution.
Aim: Show a proof of concept, that is actual possible to represent a
Situation Graph Tree in an ontology.

21.05.2012-
08.06.2012

Design an meta-model for SGT in an ontology. Port the Virat Situ-
ation Graph Tree to the meta-model.
Aim: Provide a consistent ontology to use for later use.

11.06.2012-
15.06.2012

Setup the new project called sgtowl with maven.
Aim: Provide a state of the art development environment, be inde-
pendent of the development of the SGT-Editor

18.06.2012-
22.06.2012

Training in usage of the framework owlapi, as well as the auto-
mated development of situation graph trees
Aim: Be ready to translate situation graph trees from Owl to the
SGT-Editor and vice versa

25.06.2012-
06.07.2012

Development of the SGT model.
Aim: Providing a extensible and future-proof software architecture,
that can handle multiple representation formats

09.07.2012-
20.07.2012

Implementing the transformation from an SGT to an ontology
Aim: Having a full-featured SGT encoded into an ontology for the
backwards transformation.

23.07.2012-
22.07.2012

Preparing the half-time presentation

25.07.2012 Presenting the intermediate result

30.07.2012-
24.08.2012

Implementing the transformation from an ontology to an SGT
Aim: Having a bidirectional transformation. From now on, the
ontology may serve as a replacement for the Sit++ representation
format.
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Time Task

30.07.2012-
24.08.2012

Implementing the transformation from an ontology to an SGT
Aim: Having a bidirectional transformation. From now on, the
ontology may serve as a replacement for the Sit++ representation
format.

27.08.2012-
31.08.2012

Refining the transformation application
Aim: Maintain readability of the application and fixing bugs.

03.09.2012-
14.09.2012

Writing the proof of equivalence.

17.09.2012-
28.09.2012

Finalizing the diploma thesis.
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Fmthl Examples

We introduced an example situation graph tree in Section 2.5. The following Fmthl
predicates represent the situation graph tree of Figure 2.11:

always (sgt_vars([Agent, SplitList, TmpList, AreaList, PatientList])).
always (sgt_root_graph(gr_ED_SITGRAPH0)).
always (sgt_graph(gr_ED_SITGRAPH0)).
always (sgt_graph(gr_ED_SITGRAPH1)).
always (sgt_situation(lim_ID_SIT8)).
always (sgt_situation_name(lim_ID_SIT8, sit_Root)).
always (sgt_situation(lim_ID_SIT9)).
always (sgt_situation_name(lim_ID_SIT9, sit_SituationSplit)).
always (sgt_situation(lim_ID_SIT10)).
always (sgt_situation_name(lim_ID_SIT10, sit_SituationApproach)).
always (sgt_situation(lim_ID_SIT11)).
always (sgt_situation_name(lim_ID_SIT11, sit_InAgentArea)).
always (sgt_sit_of_graph(lim_ID_SIT8, gr_ED_SITGRAPH0)).
always (sgt_sit_of_graph(lim_ID_SIT9, gr_ED_SITGRAPH1)).
always (sgt_sit_of_graph(lim_ID_SIT10, gr_ED_SITGRAPH1)).
always (sgt_sit_of_graph(lim_ID_SIT11, gr_ED_SITGRAPH1)).
always (sgt_start_sit(lim_ID_SIT8)).
always (sgt_start_sit(lim_ID_SIT10)).
always (sgt_start_sit(lim_ID_SIT11)).
always (sgt_end_sit(lim_ID_SIT8)).
always (sgt_end_sit(lim_ID_SIT9)).
always (sgt_prediction_edge(prededge10)).
always (sgt_prediction_edge(prededge11)).
always (sgt_prediction_edge(prededge12)).
always (sgt_prediction_edge(prededge13)).
always (sgt_prediction_edge(prededge14)).
always (sgt_binding(prededge10, prededge10_BIND)).
always (sgt_binding(prededge11, prededge11_BIND)).
always (sgt_binding(prededge12, prededge12_BIND)).
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always (sgt_binding(prededge13, prededge13_BIND)).
always (sgt_binding(prededge14, prededge14_BIND)).
always (sgt_prediction(prededge10,lim_ID_SIT9,lim_ID_SIT9)).
always (sgt_prediction(prededge11,lim_ID_SIT10,lim_ID_SIT11)).
always (sgt_prediction(prededge12,lim_ID_SIT10,lim_ID_SIT10)).
always (sgt_prediction(prededge13,lim_ID_SIT11,lim_ID_SIT11)).
always (sgt_prediction(prededge14,lim_ID_SIT11,lim_ID_SIT9)).
always (sgt_specialization_edge(specedge2)).
always (sgt_specialization(specedge2,lim_ID_SIT8,gr_ED_SITGRAPH1)).
always (sgt_state(lim_ID_SIT8, Vars) :-(

nth_elem(Vars, Agent, 1),
active(Agent))).

always (sgt_incr_state(lim_ID_SIT8, Vars) :-(
nth_elem(Vars, Agent, 1),
active(Agent))).

always (sgt_state(lim_ID_SIT9, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, SplitList, 2),
nth_elem(Vars, TmpList, 3),
nth_elem(Vars, AreaList, 4),
truefilter(AreaList,have_distance(Agent,element,normal),TmpList),
truefilter(TmpList,have_distance_change(Agent,element,increasing),SplitList))).

always (sgt_incr_state(lim_ID_SIT9, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, SplitList, 2),
nth_elem(Vars, TmpList, 3),
nth_elem(Vars, AreaList, 4),
active(Agent),
truefilter(AreaList,have_distance(Agent,element,normal),TmpList),
truefilter(TmpList,have_distance_change(Agent,element,increasing),SplitList))).

always (sgt_state(lim_ID_SIT10, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, TmpList, 3),
nth_elem(Vars, PatientList, 5),
truefilter(PatientList,have_distance_change(Agent,element,decreasing),TmpList))).

always (sgt_incr_state(lim_ID_SIT10, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, TmpList, 3),
nth_elem(Vars, PatientList, 5),
active(Agent),
truefilter(PatientList,have_distance_change(Agent,element,decreasing),TmpList))).

always (sgt_state(lim_ID_SIT11, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, AreaList, 4),
nth_elem(Vars, PatientList, 5),
truefilter(PatientList,have_distance(Agent,element,small_or_zero),AreaList))).

always (sgt_incr_state(lim_ID_SIT11, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, AreaList, 4),
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nth_elem(Vars, PatientList, 5),
active(Agent),
truefilter(PatientList,have_distance(Agent,element,small_or_zero),AreaList))).

always (sgt_incr_action(lim_ID_SIT8, Vars) :-(
true)).

always (sgt_incr_action(lim_ID_SIT9, Vars) :-(
true)).

always (sgt_incr_action(lim_ID_SIT10, Vars) :-(
true)).

always (sgt_incr_action(lim_ID_SIT11, Vars) :-(
true)).

always (sgt_nonincr_action(lim_ID_SIT8, Vars) :-(
true)).

always (sgt_nonincr_action(lim_ID_SIT9, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, SplitList, 2),
behave_output(Agent,SplitList,’Split’))).

always (sgt_nonincr_action(lim_ID_SIT10, Vars) :-(
nth_elem(Vars, Agent, 1),
nth_elem(Vars, TmpList, 3),
behave_output(Agent,TmpList,’Approach’))).

always (sgt_nonincr_action(lim_ID_SIT11, Vars) :-(
true)).

always (sgt_process_binding(prededge10_BIND, Vars, VarsNew) :- (
VarsNew := Vars)).

always (sgt_process_binding(prededge11_BIND, Vars, VarsNew) :- (
reset_nth_elem(Vars ,3 ,VarsNew))).

always (sgt_process_binding(prededge12_BIND, Vars, VarsNew) :- (
VarsNew := Vars)).

always (sgt_process_binding(prededge13_BIND, Vars, VarsNew) :- (
reset_nth_elem(Vars ,3 ,VarsNew))).

always (sgt_process_binding(prededge14_BIND, Vars, VarsNew) :- (
reset_nth_elem(Vars ,3 ,VarsNew))).
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Appendix C

Additional Procedures for Chapter 6

C.1 SGT Concepts in Owl Representation

Procedure C.1: OwlActionScheme.visit

output: OWLIndividual ActionScheme
1 begin
2 this ← getOwlIndividual(OwlActionScheme);
3 ont.add(this) ;

// Visit all the predicates
4 foreach element e of getPredicates() do
5 ind ← e.visit() ;
6 axiom ← createAxiom(this,hasPredicate,ind) ;
7 ont.add(axiom) ;

8 return this;
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Procedure C.2: OwlStateScheme.visit

output: OWLIndividual StateScheme
1 begin
2 this ← getOwlIndividual(OwlStateScheme);
3 ont.add(this) ;

// Visit all the predicates
4 foreach element e of getPredicates() do
5 ind ← e.visit() ;
6 axiom ← createAxiom(this,hasPredicate,ind) ;
7 ont.add(axiom) ;

8 return this;

Procedure C.3: OwlPrediction.visit

output: OWLIndividual Prediction
1 begin
2 this ← getOwlIndividual(OwlPrediction);
3 ont.add(this) ;

// Link the source of this prediction
4 ind ← getOwlIndividual(getPredictedSituation()) ;
5 axiom ← createAxiom(this,hasPreviousSituationScheme,ind) ;
6 ont.add(axiom) ;

// Link the destination of this prediction
7 ind ← getOwlIndividual(getNextSituation()) ;
8 axiom ← createAxiom(this,hasNextSituationScheme,ind) ;
9 ont.add(axiom) ;

// Add the ordered index
10 literal ← getOwlLiteral(getPredictionIndex()) ;
11 axiom ← createAxiom(this,hasOrderedIndex,literal) ;
12 ont.add(axiom) ;

// Add the bindings
13 foreach element e of getBindings() do
14 ind ← e.visit() ;
15 axiom ← createAxiom(this,hasBinding,ind) ;
16 ont.add(axiom) ;

17 return this;
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Procedure C.4: OwlBindingAssignment.visit

output: OWLIndividual BindingAssignment
1 begin
2 this ← getOwlIndividual(OwlBindingAssignment);
3 ont.add(this) ;

// Add the variable to be set
4 ind ← getVariableToBeSet().visit() ;
5 axiom ← createAxiom(this,hasVariableToBeSet,ind) ;
6 ont.add(axiom) ;

// Add the variable to be assigned
7 ind ← getVariableToBeAssigned().visit() ;
8 axiom ← createAxiom(this,hasVariableToBeAssigned,ind) ;
9 ont.add(axiom) ;
10 return this;

Procedure C.5: OwlBindingRelease.visit

output: OWLIndividual BindingRelease
1 begin
2 this ← getOwlIndividual(OwlBindingRelease);
3 ont.add(this) ;

// Add the variable to be released
4 ind ← getVariableToBeSet().visit() ;
5 axiom ← createAxiom(this,hasVariableToBeSet,ind) ;
6 ont.add(axiom) ;
7 return this;

Procedure C.6: OwlVariable.visit

output: OWLIndividual Predicate
1 begin
2 this ← getOwlIndividual(OwVariable);
3 ont.add(this) ;
4 return this
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C.2 Owl Transformation to SGT

Procedure C.7: forest.search(node)

input : GraphNode node
output: GraphNode foundNode

1 begin
2 foundNode ← null ;
3 foreach GraphNode tree ∈ forest do
4 foundNode ← tree.search(node) ;
5 if foundNode then
6 return foundNode ;

7 return foundNode ;
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Procedure C.8: search(tree,node)

input : GraphNode tree,node
output: GraphNode foundNode

1 begin
2 if isMarked(node) then
3 return null ;

4 if node == tree then
5 return tree;

6 mark(node) ;
7 foundNode ← null ;
8 foreach GraphNode child ∈ tree do
9 foundNode ← search(child,node) ;
10 if foundNode then
11 return foundNode ;

12 return null ;

Procedure C.9: OwlPrediction.assmeble

input : OWLIndividual individual
1 begin
2 ind ← individual.getObjectProperty(hasPreviousSituationScheme) ;
3 setPredictedSituation(ind);
4 ind ← individual.getObjectProperty(hasNextSituationScheme) ;
5 setNextSituation(ind);
6 restoreListOrder(individual,hasBinding,list) ;
7 getBindings().addAll(list) ;

Procedure C.10: OwlBindingAssignment.assmeble

input : OWLIndividual individual
1 begin
2 ind ← individual.getObjectProperty(hasVariableToBeAssigned) ;
3 setVariableToBeAssigned(ind);
4 ind ← individual.getObjectProperty(hasVariableToBeSet) ;
5 setVariableToBeSet(ind);
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Procedure C.11: OwlBindingRelease.assmeble

input : OWLIndividual individual
1 begin
2 ind ← individual.getObjectProperty(hasVariable) ;
3 setVariableToBeReleased(ind);

Procedure C.12: OwlSpecialization.assmeble

input : OWLIndividual individual
1 begin
2 ind ← individual.getObjectProperty(hasPreviousSituationScheme) ;
3 setSpecializedSituation(ind);
4 ind ← individual.getObjectProperty(hasSituationGraph) ;
5 setSpecializationGraph(ind);

Procedure C.13: OwlScheme.assmeble

input : OWLIndividual individual
1 begin
2 restoreListOrder(individual,hasPredicate,list) ;
3 getPredicates().addAll(list) ;

Procedure C.14: OwlPredicate.assmeble

input : OWLIndividual individual
1 begin
2 ind ← individual.getObjectProperty(hasAttributeIncremental) ;
3 setDefaultIncremental(ind);
4 setPredicateName(individual.name);
5 i ← 0 ;
6 prop ← hasArgument + i; while ind← individual.getObjectProperty(prop) do
7 getArguments().add(ind);
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